References

[1]    P. Fayet, “Fermi-Bose Hypersymmetry,” Nucl.Phys. B113 (1976) 135.

[2]    N. Seiberg and E. Witten, “Monopole Condensation, and Confinement in 𝒩 = 2 Supersymmetric Yang-Mills Theory,” Nucl. Phys. B426 (1994) 19–52, arXiv:hep-th/9407087.

[3]    N. Seiberg and E. Witten, “Monopoles, Duality and Chiral Symmetry Breaking in 𝒩 = 2 Supersymmetric QCD,” Nucl. Phys. B431 (1994) 484–550, arXiv:hep-th/9408099.

[4]    A. Klemm, W. Lerche, P. Mayr, C. Vafa, and N. P. Warner, “Self-Dual Strings and 𝒩 = 2 Supersymmetric Field Theory,” Nucl. Phys. B477 (1996) 746–766, arXiv:hep-th/9604034.

[5]    T. Banks, M. R. Douglas, and N. Seiberg, “Probing F-Theory with Branes,” Phys. Lett. B387 (1996) 278–281, arXiv:hep-th/9605199.

[6]    E. Witten, “Solutions of Four-Dimensional Field Theories via M-theory,” Nucl. Phys. B500 (1997) 3–42, arXiv:hep-th/9703166.

[7]    N. A. Nekrasov, “Seiberg-Witten Prepotential from Instanton Counting,” Adv. Theor. Math. Phys. 7 (2004) 831–864, arXiv:hep-th/0206161.

[8]    D. Gaiotto, “𝒩 = 2 Dualities,” JHEP 1208 (2012) 034, arXiv:0904.2715 [hep-th].

[9]    W. Lerche, “Introduction to Seiberg-Witten Theory and Its Stringy Origin,” Nucl. Phys. Proc. Suppl. 55B (1997) 83–117, arXiv:hep-th/9611190.

[10]    L. Álvarez-Gaumé and S. F. Hassan, “Introduction to S-Duality in 𝒩 = 2 Supersymmetric Gauge Theories: a Pedagogical Review of the Work of Seiberg and Witten,” Fortsch. Phys. 45 (1997) 159–236, arXiv:hep-th/9701069.

[11]    M. E. Peskin, “Duality in Supersymmetric Yang-Mills Theory,” arXiv:hep-th/9702094.

[12]    P. Argyres, “Non-perturbative dynamics of four-dimensional supersymmetric field theories,” in Conformal Field Theory: New Non-Perturbative Methods in String and Field Theory. Perseus, 2000. http://www.physics.uc.edu/~argyres/661/.

[13]    A. Giveon and D. Kutasov, “Brane Dynamics and Gauge Theory,” Rev. Mod. Phys. 71 (1999) 983–1084, arXiv:hep-th/9802067.

[14]    E. D’Hoker and D. H. Phong, “Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems,” arXiv:hep-th/9912271.

[15]    S. Weinberg, The Quantum Theories of Fields, vol. III. Cambridge, 2000.

[16]    J. Terning, Modern Supersymmetry. Cambridge, 2005.

[17]    Y. Tachikawa, “A review on instanton counting and W-algebras,” 2013. http://member.ipmu.jp/yuji.tachikawa/not-_on-_arxiv.html.

[18]    J. Song, “4d/2d correspondence : instantons and w-algebras,”. http://thesis.library.caltech.edu/7103/. PhD Thesis.

[19]    S. Giacomelli, “Confinement and Duality in Supersymmetric Gauge Theories,” arXiv:1309.5299 [hep-th].

[20]    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, “Integrability and Seiberg-Witten Exact Solution,” Phys. Lett. B355 (1995) 466–474, arXiv:hep-th/9505035.

[21]    E. J. Martinec and N. P. Warner, “Integrable Systems and Supersymmetric Gauge Theory,” Nucl. Phys. B459 (1996) 97–112, arXiv:hep-th/9509161.

[22]    H. Itoyama and A. Morozov, “Integrability and Seiberg-Witten Theory: Curves and Periods,” Nucl. Phys. B477 (1996) 855–877, arXiv:hep-th/9511126.

[23]    E. Witten, “Dyons of Charge e𝜃2π,” Phys.Lett. B86 (1979) 283–287.

[24]    E. Witten, “On S Duality in Abelian Gauge Theory,” Selecta Math. 1 (1995) 383, arXiv:hep-th/9505186.

[25]    J. A. Harvey, “Magnetic Monopoles, Duality, and Supersymmetry,” arXiv:hep-th/9603086.

[26]    E. J. Weinberg and P. Yi, “Magnetic Monopole Dynamics, Supersymmetry, and Duality,” Phys. Rept. 438 (2007) 65–236, arXiv:hep-th/0609055.

[27]    M. Shifman, Advanced Topics in Quantum Field Theory. Cambridge, 2012.

[28]    S. Coleman, “The magnetic monopole, fifty years later,” in The unity of the Fundamental Interactions, A. Zichichi, ed., pp. 21–117. Springer, 1983.

[29]    S. Coleman, “Le monopôle magnetique, cinquante ans après,” in Théories de jauge en physique des hautes énergies, M. K. Gaillard and R. Stora, eds., pp. 461–507. North Holland, 1983.

[30]    O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “𝒩 = 6 Superconformal Chern-Simons-Matter Theories, M2-Branes and Their Gravity Duals,” JHEP 10 (2008) 091, arXiv:0806.1218 [hep-th].

[31]    I. Antoniadis, H. Partouche, and T. Taylor, “Spontaneous Breaking of 𝒩 = 2 Global Supersymmetry,” Phys.Lett. B372 (1996) 83–87, arXiv:hep-th/9512006 [hep-th].

[32]    K. Fujiwara, H. Itoyama, and M. Sakaguchi, “Spontaneous partial breaking of 𝒩 = 2 supersymmetry and the U(N) gauge model,” in Noncommutativity and singularities, vol. 55 of Adv. Stud. Pure Math., pp. 223–233. Math. Soc. Japan, Tokyo, 2009.

[33]    R. Y. Donagi, “Seiberg-Witten Integrable Systems,” arXiv:alg-geom/9705010.

[34]    B. Craps, F. Roose, W. Troost, and A. Van Proeyen, “What is Special Kähler Geometry?,” Nucl.Phys. B503 (1997) 565–613, arXiv:hep-th/9703082 [hep-th].

[35]    D. S. Freed, “Special Kähler Manifolds,” Commun.Math.Phys. 203 (1999) 31–52, arXiv:hep-th/9712042 [hep-th].

[36]    K. A. Intriligator and N. Seiberg, “Lectures on Supersymmetric Gauge Theories and Electric–magnetic Duality,” Nucl.Phys.Proc.Suppl. 45BC (1996) 1–28, arXiv:hep-th/9509066 [hep-th].

[37]    N. Arkani-Hamed and H. Murayama, “Holomorphy, Rescaling Anomalies and Exact Beta Functions in Supersymmetric Gauge Theories,” JHEP 06 (2000) 030, arXiv:hep-th/9707133.

[38]    E. Witten, “An SU(2) Anomaly,” Phys. Lett. B117 (1982) 324–328.

[39]    E. Witten, “Constraints on Supersymmetry Breaking,” Nucl.Phys. B202 (1982) 253.

[40]    E. Witten, “Toroidal Compactification without Vector Structure,” JHEP 02 (1998) 006, arXiv:hep-th/9712028.

[41]    V. G. Kac and A. V. Smilga, “Vacuum Structure in Supersymmetric Yang-Mills Theories with Any Gauge Group,” in The many faces of the superworld, pp. 185–234. World Scientific, 1999. arXiv:hep-th/9902029 [hep-th].

[42]    A. Borel, R. Friedman, and J. W. Morgan, “Almost commuting elements in compact Lie groups,” Mem. Amer. Math. Soc. 157 no. 747, (2002) x+136, arXiv:math.GR/9907007 [math.GR].

[43]    G. Chan and E. D’Hoker, “Instanton Recursion Relations for the Effective Prepotential in 𝒩 = 2 Superyang-Mills,” Nucl.Phys. B564 (2000) 503–516, arXiv:hep-th/9906193 [hep-th].

[44]    D. Finnell and P. Pouliot, “Instanton Calculations Versus Exact Results in Four- Dimensional SUSY Gauge Theories,” Nucl. Phys. B453 (1995) 225–239, arXiv:hep-th/9503115.

[45]    N. Nekrasov and A. Okounkov, “Seiberg-Witten Theory and Random Partitions,” arXiv:hep-th/0306238.

[46]    K. Konishi, “Confinement, Supersymmetry Breaking and Theta Parameter Dependence in the Seiberg-Witten Model,” Phys.Lett. B392 (1997) 101–105, arXiv:hep-th/9609021 [hep-th].

[47]    O. Aharony, N. Seiberg, and Y. Tachikawa, “Reading Between the Lines of Four-Dimensional Gauge Theories,” JHEP 1308 (2013) 115, arXiv:1305.0318 [hep-th].

[48]    L. Hollands, C. A. Keller, and J. Song, “From SO/Sp Instantons to W-Algebra Blocks,” JHEP 03 (2011) 053, arXiv:1012.4468 [hep-th].

[49]    S. Kachru and C. Vafa, “Exact Results for 𝒩 = 2 Compactifications of Heterotic Strings,” Nucl. Phys. B450 (1995) 69–89, arXiv:hep-th/9505105.

[50]    S. Kachru, A. Klemm, W. Lerche, P. Mayr, and C. Vafa, “Nonperturbative Results on the Point Particle Limit of 𝒩 = 2 Heterotic String Compactifications,” Nucl. Phys. B459 (1996) 537–558, arXiv:hep-th/9508155.

[51]    D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-Crossing, Hitchin Systems, and the WKB Approximation,” arXiv:0907.3987 [hep-th].

[52]    A. Mikhailov, “BPS States and Minimal Surfaces,” Nucl. Phys. B533 (1998) 243–274, arXiv:hep-th/9708068.

[53]    A. Sen, “Dyon - Monopole Bound States, Selfdual Harmonic Forms on the Multi - Monopole Moduli Space, and SL(2,Z) Invariance in String Theory,” Phys. Lett. B329 (1994) 217–221, arXiv:hep-th/9402032.

[54]    N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček, “Hyperkähler Metrics and Supersymmetry,” Commun. Math. Phys. 108 (1987) 535.

[55]    K. Konishi, “Anomalous Supersymmetry Transformation of Some Composite Operators in SQCD,” Phys.Lett. B135 (1984) 439.

[56]    P. C. Argyres and A. Buchel, “New S-Dualities in 𝒩 = 2 Supersymmetric SU(2) × SU(2) Gauge Theory,” JHEP 11 (1999) 014, arXiv:hep-th/9910125.

[57]    P. C. Argyres and M. R. Douglas, “New Phenomena in SU(3) Supersymmetric Gauge Theory,” Nucl. Phys. B448 (1995) 93–126, arXiv:hep-th/9505062.

[58]    P. C. Argyres, M. R. Plesser, N. Seiberg, and E. Witten, “New 𝒩 = 2 Superconformal Field Theories in Four Dimensions,” Nucl. Phys. B461 (1996) 71–84, arXiv:hep-th/9511154.

[59]    J. A. Minahan and D. Nemeschansky, “An 𝒩 = 2 Superconformal Fixed Point with E6 Global Symmetry,” Nucl. Phys. B482 (1996) 142–152, arXiv:hep-th/9608047.

[60]    J. A. Minahan and D. Nemeschansky, “Superconformal Fixed Points with EN Global Symmetry,” Nucl. Phys. B489 (1997) 24–46, arXiv:hep-th/9610076.

[61]    O. DeWolfe, T. Hauer, A. Iqbal, and B. Zwiebach, “Constraints on the BPS Spectrum of 𝒩 = 2, D = 4 Theories with A-D-E Flavor Symmetry,” Nucl. Phys. B534 (1998) 261–274, arXiv:hep-th/9805220.

[62]    M. Noguchi, S. Terashima, and S.-K. Yang, “𝒩 = 2 Superconformal Field Theory with ADE Global Symmetry on a D3-Brane Probe,” Nucl. Phys. B556 (1999) 115–151, arXiv:hep-th/9903215.

[63]    P. C. Argyres and J. Wittig, “Mass Deformations of Four-Dimensional, Rank 1, 𝒩 = 2 Superconformal Field Theories,” arXiv:1007.5026 [hep-th].

[64]    O. Chacaltana, J. Distler, and Y. Tachikawa, “Gaiotto Duality for the Twisted A2N1 Series,” arXiv:1212.3952 [hep-th].

[65]    S. Cecotti, M. Del Zotto, and S. Giacomelli, “More on the 𝒩 = 2 Superconformal Systems of Type DP (G),” arXiv:1303.3149 [hep-th].

[66]    P. C. Argyres, K. Maruyoshi, and Y. Tachikawa, “Quantum Higgs Branches of Isolated 𝒩 = 2 Superconformal Field Theories,” JHEP 1210 (2012) 054, arXiv:1206.4700 [hep-th].

[67]    N. Nekrasov and S. Shadchin, “Abcd of Instantons,” Commun. Math. Phys. 252 (2004) 359–391, arXiv:hep-th/0404225.

[68]    T. J. Hollowood, “Strong Coupling 𝒩 = 2 Gauge Theory with Arbitrary Gauge Group,” Adv. Theor. Math. Phys. 2 (1998) 335–355, arXiv:hep-th/9710073.

[69]    Y. Tachikawa and S. Terashima, “Seiberg-Witten Geometries Revisited,” JHEP 1109 (2011) 010, arXiv:1108.2315 [hep-th].

[70]    R. Donagi and E. Witten, “Supersymmetric Yang-Mills Theory and Integrable Systems,” Nucl. Phys. B460 (1996) 299–334, arXiv:hep-th/9510101.

[71]    N. Nekrasov and V. Pestun, “Seiberg-Witten Geometry of Four Dimensional 𝒩 = 2 Quiver Gauge Theories,” arXiv:1211.2240 [hep-th].

[72]    O. Chacaltana and J. Distler, “Tinkertoys for Gaiotto Duality,” JHEP 1011 (2010) 099, arXiv:1008.5203 [hep-th].

[73]    D. Gaiotto, G. W. Moore, and Y. Tachikawa, “On 6D 𝒩 = (2, 0) Theory Compactified on a Riemann Surface with Finite Area,” Prog. Theor. Exp. Phys. 2013 (2013) 013B03, arXiv:1110.2657 [hep-th].

[74]    P. C. Argyres and N. Seiberg, “S-Duality in 𝒩 = 2 Supersymmetric Gauge Theories,” JHEP 12 (2007) 088, arXiv:0711.0054 [hep-th].

[75]    D. Gaiotto, A. Neitzke, and Y. Tachikawa, “Argyres-Seiberg Duality and the Higgs Branch,” Commun.Math.Phys. 294 (2010) 389–410, arXiv:0810.4541 [hep-th].

[76]    T. Eguchi, K. Hori, K. Ito, and S.-K. Yang, “Study of 𝒩 = 2 Superconformal Field Theories in 4 Dimensions,” Nucl. Phys. B471 (1996) 430–444, arXiv:hep-th/9603002.

[77]    D. Gaiotto, N. Seiberg, and Y. Tachikawa, “Comments on Scaling Limits of 4D 𝒩 = 2 Theories,” JHEP 1101 (2011) 078, arXiv:1011.4568 [hep-th].

[78]    E. Witten, “Topological Quantum Field Theory,” Commun.Math.Phys. 117 (1988) 353.

[79]    E. Witten, “Monopoles and Four Manifolds,” Math.Res.Lett. 1 (1994) 769–796, arXiv:hep-th/9411102 [hep-th].

[80]    N. Seiberg and E. Witten, “Gauge Dynamics and Compactification to Three-Dimensions,” arXiv:hep-th/9607163 [hep-th].

[81]    D. Gaiotto, G. W. Moore, and A. Neitzke, “Four-dimensional wall-crossing via three-dimensional field theory,” Commun.Math.Phys. 299 (2010) 163–224, arXiv:0807.4723 [hep-th].

[82]    N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and Four Dimensional Gauge Theories,” arXiv:0908.4052 [hep-th].

[83]    V. Pestun, “Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops,” Commun.Math.Phys. 313 (2012) 71–129, arXiv:0712.2824 [hep-th].

[84]    N. Hama and K. Hosomichi, “Seiberg-Witten Theories on Ellipsoids,” arXiv:1206.6359 [hep-th].

[85]    T. Nosaka and S. Terashima, “Supersymmetric Gauge Theories on a Squashed Four-Sphere,” arXiv:1310.5939 [hep-th].

[86]    L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from Four-Dimensional Gauge Theories,” Lett. Math. Phys. 91 (2010) 167–197, arXiv:0906.3219 [hep-th].

[87]    N. Wyllard, “AN1 Conformal Toda Field Theory Correlation Functions from Conformal 𝒩 = 2 SU(N) Quiver Gauge Theories,” JHEP 11 (2009) 002, arXiv:0907.2189 [hep-th].

[88]    A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, “Gauge Theories and Macdonald Polynomials,” Commun.Math.Phys. 319 (2013) 147–193, arXiv:1110.3740 [hep-th].

[89]    D. Gaiotto, L. Rastelli, and S. S. Razamat, “Bootstrapping the Superconformal Index with Surface Defects,” arXiv:1207.3577 [hep-th].

[90]    Y. Luo, M.-C. Tan, and J. Yagi, “𝒩 = 2 Supersymmetric Gauge Theories and Quantum Integrable Systems,” arXiv:1310.0827 [hep-th].

[91]    C. Closset and I. Shamir, “The 𝒩 = 1 Chiral Multiplet on T2 × S2 and Supersymmetric Localization,” arXiv:1311.2430 [hep-th].

[92]    F. Denef, “Quantum Quivers and Hall / Hole Halos,” JHEP 0210 (2002) 023, arXiv:hep-th/0206072 [hep-th].

[93]    F. Denef and G. W. Moore, “Split States, Entropy Enigmas, Holes and Halos,” JHEP 1111 (2011) 129, arXiv:hep-th/0702146 [hep-th].

[94]    S. Cecotti and C. Vafa, Classification of Complete 𝒩 = 2 Supersymmetric Theories in 4 Dimensions, vol. 18 of Surveys in differential geometry, vol. Intl. Press, 2013. arXiv:1103.5832 [hep-th].

[95]    J. Manschot, B. Pioline, and A. Sen, “From Black Holes to Quivers,” JHEP 1211 (2012) 023, arXiv:1207.2230 [hep-th].

[96]    N. Drukker, D. R. Morrison, and T. Okuda, “Loop Operators and S-Duality from Curves on Riemann Surfaces,” arXiv:0907.2593 [hep-th].

[97]    D. Gaiotto, G. W. Moore, and A. Neitzke, “Framed BPS States,” arXiv:1006.0146 [hep-th].

[98]    D. Gaiotto, “Surface Operators in 𝒩 = 2 4D Gauge Theories,” arXiv:0911.1316 [hep-th].

[99]    D. Gaiotto, S. Gukov, and N. Seiberg, “Surface Defects and Resolvents,” JHEP 1309 (2013) 070, arXiv:1307.2578 [hep-th].

[100]    T. Dimofte, D. Gaiotto, and R. van der Veen, “RG Domain Walls and Hybrid Triangulations,” arXiv:1304.6721 [hep-th].

[101]    G. W. Moore, “Applications of the six-dimensional (2,0) theory to physical mathematics,”. http://www.physics.rutgers.edu/~gmoore/FelixKleinLectureNotes.pdf.

[102]    O. Chacaltana, J. Distler, and A. Trimm, “Tinkertoys for the Twisted D-Series,” arXiv:1309.2299 [hep-th].

[103]    D. Xie, “General Argyres-Douglas Theory,” JHEP 1301 (2013) 100, arXiv:1204.2270 [hep-th].

[104]    D. Xie and P. Zhao, “Central Charges and RG Flow of Strongly-Coupled 𝒩 = 2 Theory,” JHEP 1303 (2013) 006, arXiv:1301.0210.

[105]    S. Cecotti and M. Del Zotto, “Half-Hypers and Quivers,” JHEP 1209 (2012) 135, arXiv:1207.2275 [hep-th].

[106]    M. Buican, “Minimal Distances Between SCFTs,” arXiv:1311.1276 [hep-th].

[107]    L. Bhardwaj and Y. Tachikawa, “Classification of 4D 𝒩 = 2 Gauge Theories,” arXiv:1309.5160 [hep-th].