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1. Introduction

Quantizing Gravity...

� Gravitational loops measurable in ten years

� Two candidates:

• Loop Quantum Gravity: cannot yet incorporate the SM.

• String Theory : extremely rich & models which look like the
SM.
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String Theory

� Theory in 10 dimensions : only a few !

• Type II : supergravity in 10d + gauge �elds on branes

• Type I / heterotic: supergravity + gauge �elds in 10d

� Compactify on some 6d space : huge # of theories in 4d

• Many topological types

• Form continuous family

• Con�g. of branes
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� How many are there ?

� Is the SM one of them?

� Is the SM the only one under some criteria?

• withN = 1 susy?

• with in�ationary period?

• with tiny cosmological constant

� But before discussing these, we need to study...
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the Moduli Problem

� The extra dimensions : continuously deformable

� The positions of branes : continuously changeable

{Massless Neutral Scalar Particles �Moduli�

• mediating the FIFTH force

• they'll obtain their mass through SUSY breaking...

• but even with it, they destroy BBN

Moduli are BAD.
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Moduli Fixing

� To give them mass ∼ potential ∼ superpotential...
� Hard because of the perturbative non-renormalization the-
orem

� Dif�cult but Possible
[Kachru-Kallosh-Linde-Trivedi], [Denef-Douglas]

• Uses Flux Superpotential [Gukov-Vafa-Witten]

• and Superpotential fromD-brane Instantons
[Witten], [Gorlich-Kachru-Tripathy-Trivedi]

N = 1 supergravity vacua with no moduli !
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Discretuum

� Again: How many are there ?

• (Topological types of the extra dimension) ∼ 104

• × (Ways of introducing Fluxes) ∼ 10200

• × (Several Vacua for each choice of �uxes) ∼ 1000

{Milliards of vacua !

� Discrete but forms almost Continuum :DISCRETUUM
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� You can't study each vacua one by one.

� Then: How are vacua distributed ?

• Singular extra dimensions favored,

• Cosmological Constant is uniformly distributed, etc.

� What is the correct a-priori probability?

7/42



CONTENTS

X 1. Introduction

⇒ 2. Moduli Fixing

� 3. Statistics of Vacua: Theory

� 4. Statistics of Vacua: Examples

� 5. Conclusion & Outloook

8/42



2. Moduli Fixing

Calabi-Yau compacti�cation

� 6-dimensional CY = the holonomy SU(3) ⊂ SO(6)
{ CY : complex mfd x1, x2, x3, x4, x5, x6 → z1, z2, z3, z̄1̄, z̄2̄, z̄3̄,
with Kähler formω, everywhere nonzero (3, 0) formΩ

� 6d spinor 4 = 3 ⊕ 1 under SU(3)
{ 1/4 of SUSY remain
{ Type IIB/CY :N = 2 and Heterotic/CY :N = 1 in 4d

� Concentrate on Type IIB/CY.
� No YM, need to putD-branes
{ breaks SUSY toN = 1
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Moduli in CY compacti�cation

� CYs come in various topological types:

• h1,1 two-cycles, h1,1 four-cycles

• 2h1,2 + 2 three-cycles: call them A0,A1, . . . ,Ah12
and B0,B1, . . . ,Bh12 so that Ai · B j = δi j and Ai · A j = Bi · B j = 0

� CYs can be continuously deformed , parametrized by

• ρi =
∫

Ci
ω ∧ ω : sizes of four-cycles for i = 1, . . . , h11

• zi =
∫

Ai
Ω : periods of three-cycles for i = 1, . . . , h12
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� The metric of CY varies as ρi and zi: gmn(ρi, zi)
� Take an ansatz for the 10d metric as

ds2 = ηµνdxµdxν + gmn(ρi(xµ), zi(xµ))dxmdxn

� Plug this into S =
∫

dx10√g(10)R(10){

S =
∫

dx4 √
g(4)R(4)+

∫
dx4 √

g(4)g
µν

(4)
Gi ̄∂µρ

i∂νρ̄ ̄+

∫
dx4 √

g(4)g
µν

(4)
G′

i ̄
∂µzi∂νz̄ ̄

� ρi combines with
∫

Ci
C(4) to become a complex scalar

ρi
complex

= i
∫

Ci

ω ∧ ω +

∫
Ci

C(4)

For brevity, we always mean ρi
complex

by ρi from now on
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� h11 + h12 massless complex scalars in total

• ρi: called sizemoduli or Kählermoduli

• zi: called shapemoduli or complex structuremoduli

� Complexi�ed string coupling τ = ie−φ + C(0) is also a massless
scalar.

� Massless scalars corresp. to the motion of D-branes inside the CY.

� Need orbifolding. So the presentation above is a bit less precise.
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Superpotentials for Moduli

� The system is N = 1 supergravity { the σ model metric is
Kähler:

Gi ̄ = ∂i∂ ̄K

and the potential is:

V = eK(gi ̄DiWD̄ j̄W̄ − 3WW̄)

where Di = ∂i + (∂iK) with W holomorphic

� ∂iK term signi�es that W is better understood as a holomorphic
section of the Hodge bundle:

Under K → K + f + f̄ , W → e− f W
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� Just compactifying on CY leads to W = 0.

� Masses to all moduli{we need W depending all variables τ,
ρi, zi.

• Fluxes give W for τ and zi's

• Instanton corrections give W for ρ's

� Let's see each in detail.
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Flux superpotential

� Type IIB has 2-form potentials CNSNS and CRR
with 3-form �eld strengths HNSNS and HRR
� Quantized �uxes through three-cycles
� They give rise to

W =

∫
CY
Ω ∧ (HRR + τHNSNS)

=

h12∑
i=0

[∫
Ai

Ω

∫
Bi

(HRR + τHNSNS) −
∫

Bi

Ω

∫
Ai

(HRR + τHNSNS)
]

=

h12∑
i=0

[
zi(NRR

i
+ τNNSNS

i
) −

∂F
∂zi

(MRR
i
+ τMNSNS

i
)
]
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Comments

� This depends on string coupling and shape, not on the size
.

� Ni and Mi are the number of �uxes, hence integers

� Linear in Fluxes.

� The relation ∂F/∂zi =
∫

Bi
Ω with zi =

∫
Ai
Ω is the de�ning relation

for the so-called special geometry:

e−K =

∫
Ω ∧ Ω̄ =

h12∑
i=0

[
zi
∂F̄
∂z̄ı̄
− z̄ı̄

∂F

∂zi

]
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� This form for W : obtainable by a standard KK reduction;
� or, by considering the domain-wall tension [Gukov]:

• A (p, q) 5-branewrapped on Ai is a BPS domainwall in 4d point of
view.{ The tension is

∣∣∣W|x3=∞ −W|x3=−∞

∣∣∣ from supergravity analysis.

• This sources p units of HRR and q units of HNSNS through Bi.

• The tension is given by
∣∣∣∣(p + τq)

∫
Ai
Ω
∣∣∣∣, which can be seen from the

(p, q)-brane action.

• One can read off W !
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Constraint on Ni and Mi

� A term
∫

C(4) ∧ HNSNS ∧ HRR in type IIB sugra.
� Of course there is a coupling

∫
D3 C(4).

� Another coupling −
∫
O3 C(4) to Orientifold planes.

{ EOM for C(4) leads

#O3 = #D3 +

∫
HRR ∧ HNSNS

= #D3 +

h12∑
i=0

[
NRR

i
MNSNS

i
−MRR

i
NNSNS

i

]
� #O3 is �xed by the geometry of CY.
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Instanton corrections

� Superpotentials for the size moduli ρi : How?

� Consider wrapping N D7-branes on a 4-cycle Ci
{N = 1 U(N) gauge theories with coupling constant ρi

{ Superpotential ∼ e−iρi/N associated with gaugino condensa-
tion.

� Consider D3-brane instantons wrapping Ci.
{ Contributes ∝ e−iρi

to the superpotential if the # of the fermionic
zero-modes is appropriate.
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� One can �nd CYs where suf�ciently generic instanton corrections
arise [Denef-Douglas].

� Discussions based on [Witten]: which neglects HRR and HNSNS

{

e.g.[Gorlich-Kachru-Tripathy-Trivedi]. No de�nite treatment yet.

Closed string moduli are FIXED !
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3. Statistics of Vacua: Theory

� We used�uxes HRR and HNSNS.
� In a typical CY, there're 100∼200 3-cycles to put �uxes;
� LHS of the tadpole constraint

#O3 = #D3 +

∫
HRR ∧ HNSNS

is of order 1000∼5000.

� To have SUSY vacua, #D3 ≥ 0 and the quadratic form becomes ef-

fectively positive de�nite{
√

4000 ∼ 100 choices for each three-
cycle

10100 ∼ 10200 choices of fluxes!
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� Gauge group & matter contents :
determined by the topology of the CY and the con�g. of branes.
{ Determine the form of the low energy lagrangian.

� Coupling constants depend on the moduli
� which are �xed at different position for different �ux
{ Determine the coef�cient of the low energy lagrangian

� Once you construct the SM (+ susy + in�atons etc.), there'll be
plethora of vacua with slightly differing Yukawas!
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Philosophical Considerations Aside,

� Need the distribution of Yukawas / Cosmological constants
� which are determined by the moduli
{We need the distribution of the moduli !

However,

� The position of the moduli surely depends on the �ux ...
� How on earth are the �uxes HRR and HNSNS distributed ?
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We don't know yet.

� As we saw, �uxes change when we cross domain walls.
{ Flux distribution is tied to the dynamics of domain walls
in the early universe. Extremely early universe before in�ation
matters !

� So we can't study realistic distribution of �ux. Period.
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As a zeroth approximation,

� We try a gaussian ensemble of the �uxes HRR and HNSNS:

Ni =

∫
Ai

(HRR + τHNSNS), Mi =

∫
Bi

(HRR + τHNSNS).

� Undera large�uctuation,wehavemonodromies actingon (Ni,Mi):(
Ni
Mi

)
7→

(
A B
C D

) (
Ni
Mi

)
which respects the pairing (Ni,Mi) · (Ni

′,Mi
′) =

∑
i(NiMi

′ − Ni
′Mi)

� Assume the ensemble to bemonodromy invariant.
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� How, then, does

W(z) = Nizi −Mi
∂F
∂zi

distribute? Result:

〈W(z)W(w)∗〉 ∝
∑

i

[
zi

(
∂F
∂wi

)∗
− wi

∗

(
∂F
∂zi

)]
= e−K(z,w∗),

〈W(z)W(w)〉 = 0

〈W(z)∗W(w)∗〉 = 0
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� Thedistribution 〈W(z)W(w)∗〉 ∝ e−K(z,w∗) is a verynatural guess:
transforms covariantly under the Kähler transform:

K(z, z∗) → K + f (z) + f ∗(z∗), W(z) → e− f (z)W(z)

� We can study the behavior ofN = 1 supergravity systemwith
random superpotential 〈W(z)W(w)∗〉 ∝ e−K(z,w∗).

� Huge literature on systems with random potential (not superpo-
tential) in condensed matter physics. We should utilize them...
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Distribution of Vacua

� Supersymmetric Vacua are de�ned by DiW = 0.
{ Expected number of vacua at zi is given by

ρ(z, z̄) = 〈δ(DiW(z))δ(D̄ı̄W(z̄)∗)

∣∣∣∣∣∣det
(
∂iD jW ∂iD ̄W∗

∂ı̄D jW ∂ı̄D j̄W
∗

)∣∣∣∣∣∣〉
� Determinant needed to count each vacua withweight +1.
� Absolute value makes evaluation harder; instead consider

ρ̃(z, z̄) = 〈δ(DiW(z))δ(D̄ı̄W(z̄)∗) det
(
∂iD jW ∂iD ̄W∗

∂ı̄D jW ∂ı̄D j̄W
∗

)
〉

� This counts vacuawith signs ±1.
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� ρ̃ canbe calculatedbyexpressing theDiracdeltausingexponential
& using the Wick theorem.

� The result is,

ρ̃(z)
∏

i

dzi
∧ dz̄ı̄ ∝ det

1
2π

(Ri
j + δ

i
jω)

where

Ri
j = Ri

ikl̄ dzk
∧ dz̄l̄, ω =

i
2

gi j̄ dzi
∧ dz̄ ̄

is the curvature and the Kähler form of the moduli space.
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A mathematical comment

� Let M compact n dim'l Kähler and nonsingular, E a n dim'l vector
bundle on M. { A generic section of L will have

∫
M cn(E) zeros when

counted with signs. This is almost the de�nition of the Chern classes.

� cn(E) = det RE via the Chern-Weil homomorphism.
� As DiW is a section of TM ⊗ H, it has precisely∫

M
det RTM⊗H =

∫
M

det(RTM + RH) =
∫

M
det(RTM + ω)

zeroes.
� Of course in supergravity the target space of σ model is noncom-
pact and has singularity !
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Physical Comments

� Suppose there're no curvature : R = 0.
{ ρ̃ ∝ detω, that is, the vacuadistribute uniformly following the
volume. Reminiscent of modular cosmology of [Horne-Moore]...

� Vacua tends to cluster around where the curvature R is large.

� Recall we're discussing the curvature of the moduli space.
� But it is known that the curvature of the moduli is large when the
curvature of the CY is large.

{ Strongly curved extra dimension is favored .
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4. Statistics of Vacua: Examples

� To visualize ρ̃,
� We need to calculate gi ̄and Ri

j:

gi ̄ = ∂i∂̄ ̄K, Ri
jkl̄ = ∂l̄g jm̄∂kgm̄i

� Utilize that we're dealing CY: the Kähler manifold is special, i.e.

e−K = X̄iFi − F̄iXi where Xi =

∫
Ai

Ω(= zi), Fi =

∫
Bi

Ω

(
=
∂F
∂zi

)
.

� Need to do three-dimensional integral.
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� Quite formidable; but various techniques devised and now
standard tools for those who practice mirror symmetry...

• Use Picard-Fuchs equations.

• Direct 3d integral in the case of K3 �bration
[Billó-Denef-Frè-Presando-Troost-van Proeyen-Zanon]∫

Ai

Ω =

∫
path in the base

∫
2-cycle in K3

Ω

� Strominger's formula

Ri ̄kl̄ = FikmF̄ ̄l̄n̄gn̄m + gi ̄gkl̄ + gil̄gk ̄ where Fi jk =

∫
Ω ∧ ∂i∂ j∂kΩ

is extremely useful to reduce the amount of calculation.
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� We're mostly interested in the curvature singularities.
� Behavior of Xi and Fi around them are determined by the types of
the singularity, and well studied.
� Full info on the CY is not necessary .

{ Consult the mirror symmetry literature,
{ Plug into the formula for ρ̃,
{ Now you have another paper !
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Near Conifold Singularity[Giryavets-Kachru-Tripathy]

� where a 3-cycle collapses. Call it A1.
� Let φ ≡ X1{ F1 ∼ φ logφ:

gφφ∗ ∼ log |φ|2, Rφφ∗ ∼
1

|φ|2(log |φ|)2
� gφφ∗

 0

 200

 400

 600

 800

 1000

 0  0.002  0.004  0.006  0.008  0.01

xR
   

or
   

xg

x

-1/(x log (x^2))
-x log(x^2)
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What we did

� Took two-modulus CY: degree 8 hypersurfaces inWCP4
1,1,2,2,2

with

1
8

x8
1
+

1
8

x8
2
+

1
8

x4
3
+

1
8

x4
4
+

1
8

x4
5
− ψ0x1x2x3x4x5 −

1
4
ψs(x1x2)4 = 0

� Studied the behavior near the geometric engineering limit
where pure SU(2) SYM decouples from supergravity.
� Denote ε = 1/(2ψs) and u = ψ + ψ4

0
. When ε → 0,

ε1/2 : Dynamical Scale of SYM measured in Planck units;
u : Seiberg-Witten's u.
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ε = 0.001, u:�nite

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

-10
-5

 0
 5

 10
Re u -10

-5

 0

 5

 10

Im u

 0
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� Just two conifold singularities at u = ±1.
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u = 5, vary ε

� det(R + ω) ∼
1

|ε|1(log |ε|)3
if 1/ε� u � 1{ ∼

1

|ε|3(log |ε|)3
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5. Conclusion & Outlook

X Moduli can now be�xed.

X Fixing needs �uxes.

X Flux introduces huge number of vacua .

X Vacuum distribution can be studied.

X We saw some examples.
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Outloook

� Moduli �xing in string theory other than type IIB
{ Already large literature exists.

� Behavior around various singularities in the moduli.
{We had done some. Nothing spectacular so far...

� Pre-in�ationary cosmology.
{We must stay inside physics, must not do theology...
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