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1. Introduction |
Quantizing Gravity...

o Gravitational loops measurable in ten years
¢ Two candidates:
e Loop Quantum Gravity: cannot yet incorporate the SM.

o String Theory : extremely rich & models which look like the
SM.
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String Theory

o Theoryin 10 dimensions: only a few !
o Type Il : supergravity in 10d + gauge fields on branes
e Typel / heterotic: supergravity + gauge fields in 10d
o Compactify on some 6d space : huge # of theories in 4d
e Many topological types
e Form continuous family

e Config. of branes
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o How many are there ?

o Is the SM one of them?

o Isthe SM the only one under some criteria?
o with NV =1 susy?
o with inflationary period?
e with tiny cosmological constant

o But before discussing these, we need to study...
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the Moduli Problem

o The extra dimensions : continuously deformable
o The positions of branes : continuously changeable
~> Massless Neutral Scalar Particles “Moduli”

e mediating the FIFTH force

e they’ll obtain their mass through SUSY breaking...

e but even with it, they destroy BBN

Moduli are BAD.
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Moduli Fixing

o To give them mass ~ potential ~ superpotential...
o Hard because of the perturbative non-renormalization the-

orem

o Difficult but Possible
[Kachru-Kallosh-Linde-Trivedi], [Denef-Douglas]

e Uses Flux Superpotential [Gukov-Vafa-Witten]

e and Superpotential from D-brane Instantons
[Witten], [Gorlich-Kachru-Tripathy-Trivedi]

N =1 supergravity vacua with no moduli !
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Discretuum

o Again: How many are there ?
e (Topological types of the extra dimension)
e X (Ways of introducing Fluxes)
e X (Several Vacua for each choice of fluxes)

~> Milliards of vacua!

o Discrete but forms almost Continuum :DISCRETUUM
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¢ You can’t study each vacua one by one.
o Then: How are vacua distributed ?
e Singular extra dimensions favored,
e Cosmological Constant is uniformly distributed, etc.

o What is the correct a-priori probability?
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2. Moduli Fixing |

Calabi-Yau compactification

o 6-dimensional CY = the holonomy S/ (3) € SO(6)
~> CY : complex mfd  x1, 22, 23, 2%, 25,26 — z1,22, 23,71 22 23,
with Kahler form @, everywhere nonzero (3, 0) form (2

o 6d spinor4 =3 @1 under SU(3)
~ 1/4 of SUSY remain
~> Type lIB/CY : N = 2 and Heterotic/CY: N =1in 4d

o Concentrate on Type IIB/CY.
o No YM, need to put D-branes
~> breaks SUSY to \V = 1
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Moduli in CY compactification

o CYs come in various topological types:
* hi1two-cycles, h11 four-cycles

* 2h1, + 2 three-cycles: call them Ay, Ay, ..., Ay,
and By, By, ..., By, sothat A; - Bj= 61']' and A; *Aj=B;-Bj=0

o CYs can be continuously deformed , parametrized by

® p;= fCi w A w : sizes of four-cyclesfori=1,...,hq1

o z; = Ll. Q : periods of three-cyclesfori=1,...,hq>
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o The metric of CY varies as p; and z;:  gy,:1:(0;, Z;)
¢ Take an ansatz for the 10d metric as

ds® = Nuydxtdx’ + gun(p;(cH), z;(xH))dx™ dx"

o Plug thisinto S = [ dx'% \gag)R 10~
§= f dx* \g@ R+ f dx* \/8(4)3&1;Gi79upi3vﬁ7 + f dx* \/8(4)8i2;G§,-‘9uziavZ]_

o p' combines with [. CY to become a complex scalar
1

pi =if a)Aa)+fC(4)
complex C; C

1

o i i
For brevity, we always mean pcomplex by o' from now on
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o h11 + h1p; massless complex scalars in total
o p;: called size moduli or Kahler moduli

e z;: called shape moduli or complex structure moduli

o Complexified string coupling 7 = ie=? + CO is also a massless
scalar.

o Massless scalars corresp. to the motion of D-branes inside the CY.

o Need orbifolding. So the presentation above is a bit less precise.
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Superpotentials for Moduli

o The system is \V = 1 supergravity ~> the ¢ model metric is
Kahler:

Gij = 0;05K
and the potential is:
V = K(gTD,WD;W - 3WW)
where D; = 9; + (9;K) with W holomorphic
o 0;K term signifies that W is better understood as a holomorphic
section of the Hodge bundle:

UnderK>K+f+f Woelw
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o Just compactifying on CY leads to 'V = (.

o Masses to all moduli ~ we need W depending all variables r,

Pir Zi-
e Fluxes give W for 7 and z,’s

e Instanton corrections give W for p’s

¢ Let’s see each in detail.

14/42



Flux superpotential

o Type lIB has 2-form potentials CnsNs and Crr
with 3-form field strengths Hnsns and Hgg

o Quantized fluxes through three-cycles

o They give rise to

W = Q A (HRgr + THNSNS)
CY
h1s
= f Q f (HRR + THNSNS) — f Qf (HRR + THNSNS)]
i—o LYAi  JB; B; JA;
h1p
JoF
= ) |zi(NRR + tNNSNS) _ — gRR 4 NSRS,
1 1 azi 1 1
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Comments

o This depends on string coupling and shape, not on the size

o N; and M; are the number of fluxes, hence integers
o Linear in Fluxes.

o The relation JF/dz; = fB'Q with z; = j;l. Q is the defining relation
for the so-called special geometry:
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o This form for W : obtainable by a standard KK reduction;
o or, by considering the domain-wall tension [Gukov]:

e A (p,q) 5-brane wrapped on 4; is a BPS domain wall in 4d point of
view. ~» The tension is |W|x3=oo - W|x3=_oo| from supergravity analysis.

e This sources p units of Hggr and g units of HNsNs through B;.

e The tension is given by ‘(p + 19) fA. Q|, which can be seen from the

(v, g)-brane action.

e Onecanreadoff W!
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Constraint on N; and M;

o A term f Cc® A HNsNs A HRg in type 1IB sugra.
o Of course there is a coupling [r,3 C.

o Another coupling — f03 C“ to Orientifold planes.

~> EOM for CY leads

#03 = #p3 + f Hpr A HNSNS

h12
— RR» /NSNS _ A sRR7/NSNS
_#D3+Z[Ni M, MTN; ]
1=0
o #o3 is fixed by the geometry of CY.
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Instanton corrections

o Superpotentials for the size moduli p' : How?

o Consider wrapping N D7-branes on a 4-cycle C;

~ N =1 U(N) gauge theories with coupling constant fok

~> Superpotential ~ ¢~?'/N associated with gaugino condensa-
tion.

o Consider D3-brane instantons wrapping C;.
~> Contributes x ¢~ to the superpotential if the # of the fermionic
zero-modes is appropriate.
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o One can find CYs where sufficiently generic instanton corrections
arise [Denef-Douglas].

o Discussions based on [Witten]: which neglects Hrgr and HnsNs

~>
e.g.|Gorlich-Kachru-Tripathy-Trivedi]. No definite treatment yet.

Closed string moduli are FIXED !
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3. Statistics of Vacua: Theory |

o We used fluxes Hgrr and HnsNs.
o In a typical CY, there’re 100~200 3-cycles to put fluxes;
o LHS of the tadpole constraint

#03 = #p3 + f Hpr A HNSNS

is of order 1000~5000.

¢ To have SUSY vacua, #p3 > 0 and the quadratic form becomes ef-

fectively positive definite~ V4000 ~ 100 choices for each three-
cycle

10190 <~ 10290 choices of fluxes!
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o Gauge group & matter contents:
determined by the topology of the CY and the config. of branes.
~> Determine the form of the low energy lagrangian.

o Coupling constants depend on the moduli
o which are fixed at different position for different flux
~> Determine the coefficient of the low energy lagrangian

o Once you construct the SM (+ susy + inflatons etc.), there’ll be
plethora of vacua with slightly differing Yukawas!
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Philosophical Considerations Aside,

o Need the distribution of Yukawas / Cosmological constants
o which are determined by the moduli
~> We need the distribution of the moduli!

However,

¢ The position of the moduli surely depends on the flux...
o How on earth are the fluxes Hrg and Hnsns distributed ?
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We don’t know yet.

o As we saw, fluxes change when we cross domain walls.

~> Flux distribution is tied to the dynamics of domain walls
in the early universe. Extremely early universe before inflation
matters !

o So we can’t study realistic distribution of flux. Period.
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As a zeroth approximation,

o We try a gaussian ensemble of the fluxes Hgrg and HNsNs:

N; = f (HRR + THNSNS), M; = f (HRR + THNSNS)-
A;j B;

o Under alarge fluctuation, we have monodromies acting on (\N;, M;):

i) = (¢ o))

which respects the pairing (N;, M) - (N;/, M;") = Y.;(N;M;" — N;’M;)

o Assume the ensemble to be monodromy invariant.
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o How, then, does
OF
821

distribute? Result:

. [ OF
e« ()

o~ K(zw?)

(WEW(w)) =0
(WE@'W(w)*) =0
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o Thedistribution (W (2)W(w)*) oc e K= isavery natural guess:
transforms covariantly under the Kahler transform:

K(z,z") » K+ f@) + f*(z9), W) - e TPW()

o We can study the behavior of N = 1 supergravity system with
random superpotential (WE@)Ww)*) « e~ Kz,

¢ Huge literature on systems with random potential (not superpo-
tential) in condensed matter physics. We should utilize them...
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Distribution of Vacua

o Supersymmetric Vacua are defined by D; IV = 0.
~> Expected number of vacua at z; is given by
dot (BiD]-W aipfw*)

]

o Determinant needed to count each vacua with weight +1.
o Absolute value makes evaluation harder; instead consider

a,-D]-W a,-D]—W*)

plz, 2) = (B(D;W(2)d(D;W(2)") det (aipjw D)

o This counts vacua with signs +1.
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o pcan be calculated by expressing the Dirac delta using exponential
& using the Wick theorem.

o Theresultis,
: _ 1 . :
pe) [ | dz' A dz" o det —(R'; + &7 jw)
i

where
ik i _ i o -
R'; = R 7dz" A dZ, © = -8 dz! A dz/

is the curvature and the Kahler form of the moduli space.
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A mathematical comment

o Let M compact n dim’l Kahler and nonsingular, E a n dim’l vector
bundle on M. ~»> A generic section of L will have fM cn(E) zeros when
counted with signs. This is almost the definition of the Chern classes.

¢ ¢u(E) = det Rp via the Chern-Weil homomorphism.
o As D;W is a section of TM ® H, it has precisely

f det RTpmgH = f det(RTpr + Ry) = f det(RTpr + w)
M M M

Zeroes.

o Of course in supergravity the target space of 0 model is noncom-
pact and has singularity !

31/42



Physical Comments

¢ Suppose there’re no curvature: R = 0.
~> p o det w, that s, the vacua distribute uniformly following the
volume. Reminiscent of modular cosmology of [Horne-Moore]...

¢ Vacua tends to cluster around where the curvature R is large.

o Recall we’re discussing the curvature of the moduli space.
o But it is known that the curvature of the moduli is large when the
curvature of the CY is large.

~> Strongly curved extra dimension is favored .
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4, Statistics of Vacua: Examples |

o To visualize g,
> We need to calculate g;;and R'}:

o Utilize that we’re dealing CY: the Kahler manifold is special, i.e.

_ _ JF
e K = X;F; — F;X; where X; = f Q(=z;), F;= f Q (= —) .
A; B; 0z;

o Need to do three-dimensional integral.
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o Quite formidable; but various techniques devised and now
standard tools for those who practice mirror symmetry...

e Use Picard-Fuchs equations.

e Direct 3d integral in the case of K3 fibration
[Billo-Denef-Fre-Presando-Troost-van Proeyen-Zanon]

f Q= f f Q
A; path in the base J2-cycle in K3

o Strominger’s formula

Ri]‘kf = Pikmpﬁﬁgﬁm + Si78ki + 818k where Pijk = fﬂ A 818](9,(9

is extremely useful to reduce the amount of calculation.
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o We’re mostly interested in the curvature singularities.
o Behavior of X; and F; around them are determined by the types of

the singularity, and well studied.
o Full info on the CY is not necessary.

~> Consult the mirror symmetry literature,
~> Plug into the formula for g,
~> Now you have another paper !
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Near Conifold Singularity[Giryavets-Kachru-Tripathy]

o where a 3-cycle collapses. Call it A;.

¢

Let p = X7~ F1 ~ ¢ log ¢:

1

pg* ~ 10glpl%,  Rygr

|pI>(log |p])?

> g(l)(l)*

-1/(x log (X2))  e—

-X 10g(X"2) m—

600
=)
X
S
@
X

400

200 ~ \

0
0 0.002 0.004 0.006 0.008
X
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What we did

¢ Took two-modulus CY: degree 8 hypersurfaces in WC]P‘; {200 with
18,18, 14 14 14 1 A
=X+ =x" 4+ =x_ + =x + =x_ — Pox1x2x3x4Xx5 — =WPs(x1x9)" = 0
81 82 83 84 85 11[}012345 411}5(12)

o Studied the behavior near the geometric engineering limit
where pure SU(2) SYM decouples from supergravity.
o Denotee =1/ andu =1 + 1/)‘3. When e - 0,

el/2: Dynamical Scale of SYM measured in Planck units;
u: Seiberg-Witten’s u.
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€ = 0.001, u:finite
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20
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o Just two conifold singularities at 1 = +1.
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u=>5,varye

100

10

0.1

-0.001

1 1

o det(R + w) ~ ifl/e>u>1~ ~
lel1(log |e])® lel3(log [e])?
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5. Conclusion & Outlook |

v/ Moduli can now be fixed.

v/ Fixing needs fluxes.

v/ Flux introduces huge number of vacua.
v/ Vacuum distribution can be studied.

v/ We saw some examples.
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Outloook

o Moduli fixing in string theory other than type IIB
~> Already large literature exists.

o Behavior around various singularities in the modauli.
~> We had done some. Nothing spectacular so far...

o Pre-inflationary cosmology.
~> We must stay inside physics, must not do theology...
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