

を考える。

立川裕二 (IPMU)

Based on a series of papers in collaboration with:

Alday, Benini, Benvenuti, Gaiotto, Gukov, H. Kanno, S. Kanno, Keller, Matsuo, Mekareeya, Moore, Neitzke, Nishioka, Shiba, Song, Terashima, H. Verlinde, Wecht, Xie, Yamazaki

I also greatly benefitted from discussions with

Argyres, Chacaltana, Distler, Hosomichi, Maruyoshi, Okuda, Shapere, Taki, Teschner, Yagi

What is "6=4+2" ?

How does it work ?

What does it mean ?

What is

6=4+2?

A 6d N=(2,0) theory is one of :

A 6d N=(2,0) theory is one of : Dĸ E_{6,7,8} A_{K-I} $C^{2}/tetra$ $C^2/octa$ Type IIB on C^2/Z_K C²/dihed $C^2/icosa$

- 6d theory of type X on T²
 = 4d N=4 SYM with gauge group X
- Exchanging edges of T²
 = S-duality of 4d N=4 SYM with X
- There's no theory of type B, C, F, G.
 if so, the S-dual of N=4 SYM of SO(odd) would be N=4 SYM of SO(odd) again, contradicting Montonen-Olive.

The basic defects of 4d N=4 SYM of gauge group G are:

Wilson loop

R:rep.of G

't Hooft loop

 R^{v} : rep. of G^{v}

The basic defects of 6d N=(2,0) theory of type X are:

2d defect "Wilson surface" R : rep. of X 4d defect "Fuzzy spheres"

 $\rho: SU(2) \rightarrow X$

Liouville theory:

$$S = \int d^2x \int \left(\partial_{\mu} \phi \partial_{\mu} \phi + \int \nabla Q \phi R + \mu e^{-\int \Sigma b \phi} \right)$$

Well studied !

It describes reflection against the exponential wall :

[Gadde-Pomoni-Rastelli-Razamat-Yan]

を考える。

[Dimofte-Gaiotto-Gukov]

を考える。

[Nishioka-YT-Yamazaki]

5=3+2? 6=2+2+2?

How does it work?

Mathematics > Quantum Algebra

Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on A²

Olivier Schiffmann, Eric Vasserot

(Submitted on 13 Feb 2012)

We construct a representation of the affine W-algebra of gl_r on the equivariant homology space of the moduli space of U_r-instantons on A², and identify the corresponding module. As a corollary we prove the AGT conjecture (in the massless case). Our approach uses a suitable deformation of the universal enveloping algebra of the Witt algebra W_{1+∞}, which is shown to act on the above homology spaces (for any r) and which specializes to all W(gl_r). This deformation is in turn constructed from a limit, as n tends to infinity, of the spherical degenerate double affine Hecke algebra of GL_n, or equivalently as a degeneration of the (spherical) Hall algebra of an elliptic curve.

Comments: 94 pages, Latex2e

Subjects: Quantum Algebra (math.QA); Mathematical Physics (math-ph); Algebraic Geometry (math.AG)

Cite as: arXiv:1202.2756v1 [math.QA]

Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on A²

Olivier Schiffmann, Eric Vasserot

(Submitted on 13 Feb 2012)

We construct a representation of the affine W-algebra of gl_r on the equivariant homology space of the moduli space of U_r-instantons on A², and identify the corresponding module. As a corollary we prove the AGT conjecture (in the massless case). Our approach uses a suitable deformation of the universal enveloping algebra of the Witt algebra $W_{1+\infty}$, which is shown to act on the above homology spaces (for any r) and which specializes to all W(gl_r). This deformation is in turn constructed from a limit, as n tends to infinity, of the spherical degenerate double affine Hecke algebra of GL_n, or equivalently as a degeneration of the (spherical) Hall algebra of an elliptic curve.

Comments: 94 pages, Latex2e

Subjects: Quantum Algebra (math.QA); Mathematical Physics (math-ph); Algebraic Geometry (math.AG)

Cite as: arXiv:1202.2756v1 [math.QA]

6d N=(2,0) theory of type SU(2) on S⁴

2d Liouville theory

6d N=(2,0) theory of type SU(2) on S^4

2d Liouville theory

6d N=(2,0) theory of type SU(2) : supersymmetric. on S⁴

2d Liouville theory

4d N=2 gauge theory on S⁴

: supersymmetric.

Pestun's Od matrix model

Pestun's Od matrix model

: supersymmetric.

SUSY Localization

Od matrix model of Kapustin-Yaakov-Willet

6d
$$N=(2,0)$$
 theory of type SU(2) : supersymmetric.
on S⁴

SUSY Localization

2d Liouville theory

SUSY Localization

2d Liouville theory on S¹

5d maximal SYM with G=SU(2) : supersymmetric. on S⁴

SUSY Localization

2d Liouville theory on S¹

5d maximal SYM with G=SU(2) on S⁴

: supersymmetric.

: non susy.

SUSY Localization

2d Liouville theory on S¹ II I d Liouville QM + Virasoro descendants

5d maximal SYM with G=SU(2)

Localize via the supercharge $Q^2 = v$

Localize via the supercharge $Q^2 = v$

5d maximal SYM with G=SU(2) on S⁴

5d maximal SYM with G=SU(2) on S^4

Instantons at the north pole

a: a real scalar on S⁴, × $a \sim -a$

"time"

Instantons at the south pole

80

00

5d maximal SYM with G=SU(2) on S^4

= QM of Instantons at the north pole

+ QM of a real scalar on S⁴, $a \sim -a$

+ QM of Instantons at the south pole

2d Liouville theory on S¹

= Left-moving Virasoro descendants

+ Liouville QM

+ Right-moving Virasoro descendants

5d maximal SYM with G=SU(2) on S⁴ 2d Liouville theory on S¹ Instantons at OM of the north pole Left-moving Virasoro descendants OM of a real scalar on S⁴, + Liouville QM Instantons at OM of +the south pole Right-moving Virasoro descendants

Mathematically proved !

QM of Left-moving Virasoro descendants

Mathematics > Quantum Algebra

Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on A²

Olivier Schiffmann, Eric Vasserot

(Submitted on 13 Feb 2012)

We construct a representation of the affine W-algebra of glr on the equivariant

homology space of the moduli space of U_r -instantons on A^2 , and identify the corresponding module. As a corollary we prove the AGT conjecture (in the massless case). Our approach uses a suitable deformation of the universal enveloping algebra of the Witt algebra $W_{1+\infty}$, which is shown to act on the above homology spaces (for any r) and which specializes to all $W(gl_r)$. This deformation is in turn constructed from a limit, as n tends to infinity, of the spherical degenerate double affine Hecke algebra of GL_n , or equivalently as a degeneration of the (spherical) Hall algebra of an elliptic curve.

Comments: 94 pages, Latex2e Subjects: Quantum Algebra (math.QA); Mathematical Physics (math-ph); Algebraic Geometry (math.AG) Cite as: arXiv:1202.2756v1 [math.QA]

Teschner proved some time ago that a QM on a half-line which can be combined with the Virasoro to form a 2d CFT is necessarily Liouville.

So, in a very indirect way, it's guaranteed that this should give Liouville...

Instanton partition function of 4d pure N=2 SU(2)

 $= \langle G | \exp(-t L_0) | G \rangle$

where |G> is a coherent state in the Verma module of the Virasoro algebra, and *t* is the inverse coupling constant.

[Gaiotto]

Why?

4d pure N=2 SU(2) \simeq 5d max SUSY SU(2) on a segment

 \simeq a state <G| of Virasoro, created by the left b.c., propagating for a while *t*, then annihilated by the right b.c., |G>

 $= \langle G | \exp(-t L_0) | G \rangle$

What does it mean?

 R^4

time

R⁴

time

R⁴

time

6d *N*=(2,0) theory

- Instantons generate an additional S¹.
- Instanton number = L_0 = KK momentum.
- Nonperturbative physics can generate a dimension. No large N.

- This should not surprise us.
- Consider Type IIA.
- Nonperturbative excitation: D0s.
- They generate the M-theory circle.

- In a sense, I just repeated the same thing:
- 5d SYM ~ D4 branes
- instantons ~ D0 branes on D4 branes
- instantons can generate a dimension
 D0 branes can generate a dimension

- So, it's not that we learned something very new. But we are slowly getting solid results.
- Recall that there should be one threshold bound state of k D0-branes for each k.
- Not proven yet.
- But now mathematicians proved that there are exactly the right number of bound states of k D0-branes within D4s.

- Looking back at "prehistoric" papers around 1997~2000, you realize that they came very close.
- e.g. the DLCQ of N M5-branes as the QM of instantons on T⁴.
 [Ganor-Sethi]
- Many great papers from those days remain almost forgotten, due to the rise of AdS/CFT.
- Maybe some 温故知新 is useful.