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0. Brief Introduction

♦ 1+1d integrable systems : sources formany insights on�eld theory

♦ Are there integrable models in 4d? If solved, it may become an-
other paradigm...

♦ Most tractable models are those with i) many supersymmetries
and ii) in the large N limit.

♦ Indeed, we have seen recently several signs of integrability inN =
4 super SU(N) gauge theory in the large N limit.

♦ I hope some in the audience will solve this interesting problem...
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1. Detailed Introduction
N = 4 supersymmetric SU(N) gauge theory

♦ Classical Action

L =
tr

2g2

(
FµνFµν + (Dµφi)2 + [φi, φj]2 + ψ̄aiγµDµψa + ψ̄aΓi

ab
[φi, ψ

b]
)

where all �elds are N × N hermitean matrices, and

Dµ = ∂µ − i[Aµ, · ], Fµν = i[Dµ,Dν] = ∂µAν − ∂νAµ − i[Aµ,Aν]
φi, i = 1, . . . , 6 : real vector under global symmetry SO(6)

ψa, a = 1, . . . , 4 : Weyl spinor of global SO(6).

♦ Four supercharges Qa, a = 1, 2, 3, 4 with

[Qa,Aµ] ∼ γµψa

2/20



helicity # of states �elds
1 1 Aµ

1/2 4 ψ1, ψ2, ψ3, ψ4
0 6 φ1, φ2, φ3, φ4, φ5, φ6

-1/2 4 ψ̄1, ψ̄2, ψ̄3, ψ̄4
-1 1 Aµ

♦ Maximally supersymmetric in four-dimension without gravity.

♦ Obtained from 10d super Yang-Mills: (µ, ν = 0, . . . , 9)

L =
tr

g2

(
FµνFµν + ψ̄ΓµDµψ

)
by naïve dimensional reduction, i.e.
rewritingA4,A5, . . . ,A9 → φ1, φ2, . . . , φ6 and forgettingabout ∂4, ∂5, . . . , ∂9.
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♦ The coupling constant g is NOT renormalized to ANY ORDERS in
perturbation theory.

♦ Believed to de�ne a superconformal theory with symmetry group

SO(5, 1)︸   ︷︷   ︸
conformal group in 4d

× SO(6)︸︷︷︸
global sym.

⊂ PSU(2, 2|4)

Fermionic generators are Qa and Sa.

♦ Believed to have a symmetry under strong�weak coupling duality

16π2

g2
↔ g2,

At least, protected states do match.
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Bare Basics of Feynman diagrams

♦ Free Theory:

〈xi1xi2 · · · xin〉0 ≡

∫
(
∏

dx)xi1xi2 · · · xine−Ai jxix j.

This can be calculated using the Wick theorem. Propagators are
〈xix j〉 = (A−1)i j.

♦ Interacting theory:

〈xi1xi2 · · · xin〉 ≡

∫
(
∏

dx)xi1xi2 · · · xine−Ai jxix j+gP(x)

Perturbative calculation is done by expanding e gP(x):

〈xi1xi2 · · · xin〉 = 〈xi1xi2 · · · xin〉0 + g〈xi1xi2 · · · xinP(x)〉0 + · · ·
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♦ For matrix �elds, it is useful to draw diagrams in double-line: e.g.

〈φi ̄φkl̄〉 ∝ δil̄δk ̄ by i
̄ k

l̄

〈trφ4
〉 by

♦ A line connecting two indices signi�es that two ends must carry
the same index.
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't Hooft expansion, large N limit

♦ Thus, each index loop, or surface contributes a factor of tr 1 = N.
Let us denote by E,V, S resp. the number of edges, vertices, surfaces.

diagram ∼ (g2)E−VNS

∼ N2−2×genusλE−V

where λ = g2N: the 't Hooft coupling .

∼ N2λ ∼ λ
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♦ In the N → ∞ limit with λ = g2N �xed, only planar diagram con-
tribute.
♦ Reminds us of string theory, where genus g contribution ∼ g−2+2g

s .

♦ String theorists have found (in some sense) the dual string de-
scription:

Maldacena Conjecture

N = 4 SU(N) super Yang-Mills theory
is equivalent to

type IIB strings on AdS5 × S5.
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Supports for the conjecture

♦ The two systems are given by different ways of taking the low
energy limit of one and the same system : N D3 branes in �at R10.

(curvature radius)4
⇔ λ

string coupling ⇔ 1/N2

♦ Global symmetries match: SO(5, 1) × SO(6) acts geometrically on
AdS5 × S5.

time translation in AdS5 ⇔ dilatation in 4d

♦ Many more profound facts...
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♦ This conjecture relates two dif�cult, unsolved objects (strings on
AdS andN = 4 SYM) { facilitates the analysis of both sides.

♦ Classical strings moving in AdS5 × S5 has in�nitely many conserved
charges of Yangian type.

Question:

Is there integrability in theN = 4 SYM side?
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2. Dilatation operator inN = 4 SYM

♦ If O has dimension ∆0 + δ∆,

〈O(x)O(0)〉 =
const.

|x|2(∆0+δ∆)
=

const.

|x|2∆0
− 2δ∆ log(Λ|x|) + · · ·

In general, there is a mixing

〈Oa(x)Ob(0)〉 =
const.

|x|2∆0
− 2δ∆ab log(Λ|x|) + · · ·

Multiplicatively renormalized operators are eigenstates of δ∆ab.

♦ We have to i) calculate δ∆ab perturbatively and ii) diagonalize it.

♦ We take 't Hooft limit and consider planar diagrams only.
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One-loop

♦ Weconcentrateon theoperatorsof the formOi1i2···iJ = trφi1φi2 · · ·φiJ.

♦ One can show that mixing closes in these operators at one-loop.

♦ δ∆ is a 6J × 6J matrix ∼ some Hamiltonian acting on a chain of J
spins with six components.

♦ One-loop planar diagrams only generate nearest neighbor inter-
actions.
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♦ Combined with SO(6) invariance,

δ∆ = const. +
∑

a
(cKa,a+1 + c′Pa,a+1)

where Pv ⊗ w = w ⊗ v, Kv ⊗ w = (v,w)
∑6

i=1
ei ⊗ ei.

♦ Calculating coef�cients c, c′ is a straightforward exercise in dia-
grammatics, and we �nd

δ∆ = const. +
λ

16π2

J∑
a=1

(1Ka,a+1−2Pa,a+1).

♦ This precise combination of K − 2P implies integrability ! Indeed,
de�ne R12(u) acting on V1 ⊗ V2 by ( dim Vi = n)

R12(u) =
1

n − 2
(u(2u + 2 − n) − (2u + 2 − n)P12 + 2uK12)
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♦ It satis�es the Yang-Baxter relation

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u).

♦ Hence the transfer matrix

T0(u) = R01(u)R02(u) · · ·R0J(u)

generates commuting charges Hm by expanding log trV0 T0(u) = umHm.
One can show

H2 ∝

J∑
a=1

(
Ka,a+1 +

n − 2
2

(1 − Pa,a+1)
)
.

♦ With n = 6, this precisely agreeswith δ∆. This systemcanbe further
analyzed by algebraic Bethe ansatz.
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Aside: Implications for Maldacena Conjecture

♦ For large J, the Bethe equation reduces to integral equations for
the density of Bethe roots. { Anomalous dimensions can be ex-
pressed using the complex plane with cuts.

♦ Correspondingly, string state in theAdS sidewith large J is a string
rotating in S5. Its classical motion can be solved, and is expressed
using the same complex plane with cuts.

♦ This gives an intricate test of AdS/CFT correspondence.
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Parity Pair

♦ We have found commuting charges Hm with H2 = δ∆. Is there any
gauge theoretical manifestation for Hm,2?

♦ Consider the outer automorphism of SU(N), parity, given by

Ω : φ1φ2 · · ·φJ → φJ · · ·φ2φ1.

This generates aZ2 global symmetry, and [∆,Ω] = 0. { Eigenstates of
anomalousdim. canbe taken simaltaneously tobeparity eigenstates.

♦ In general, there's no relation between energy eigenvalues for
parity even/odd states.
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♦ However, in our case we have {Hodd,Ω} = 0.

♦ Hence, acting e.g. by H3, we �nd states of degenerate energy with
opposite parity ! �parity pair�

♦ H1 is a shift operator φ1φ2 · · ·φJ → φJφ1 · · ·φJ−1. However, due to
the cyclicity of tr, this is trivially zero. We need higher charges for
this argument.

♦ {Hodd,Ω} = 0 is expected generically for integrable chains. Thus,
existence of parity pairs is a good touchstone for integrability .
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Extension to Higher-loops

♦ 1/N corrections break degeneracy of parity pairs. Integrability, if
any, is a property of the large N limit.

♦ On the other hand, λ = g2N corrections with 1/N → 0 preserves
parity pairs at least up to λ3 order.

♦ At higher order, there appear
i) long range spin exchange,
ii) three-body and many-body interaction,
iii) �uctuation in the length of the spin chain

♦ This suggests the existence of a new kind of integrable spin chain.
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♦ Let us expand the anomalous dimension as

∆ = ∆0 + λδ∆1 + λ
2δ∆2 + · · · .

As [δ∆1, δ∆2] , 0, ∆ is not the combination of the commuting Hamilto-
nians of SO(6) Heisenberg spin chain.

♦ δ∆, restricted to SU(2) ⊂ SO(6) subsector and with terms of ii), iii)
dropped by hand, is known to agree with the Inozemtsev spin chain
up to λ3, but disagrees at order λ4.

♦ Inozemtsev spin chain is claimed to be the most general SU(2)-
invariant integrable chain with two-body interactions only. How-
ever, as ∆ contains many-body interactions, the disagreement is not
so discouraging.
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3. Conclusion

X One-loop anomalous dimensions of theN = 4 SU(N) in the 't Hooft
limit can be identi�ed with the integrable SO(6) spin chain .

X This integrability leads to the existence of the parity pairs.

X Parity pairs persist at least up to three-loops.

X It is an interesting and important problem to settlewhether there
is integrability, or at least parity pairs to all orders in λ.
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Appendix.

We list some of the key papers:

♦ before and including BMN... please refer to Ideguchi-san's mas-
ter's thesis !
♦ Korchemsky et al. Integrability in the Regge limit.
♦ Frolov-Tseytlin On spinning strings.
♦ Minahan-Zarembo Finds integrable spin chains in dilatation op-
erator.
♦ Beisert-Kristjansen-Staudacher Higher order analysis of dilata-
tion operator. Parity Pair.
♦ Beisert-Minahan-Staudacher-Zarembo Matching between Bethe
ansatz and spinning string.
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♦ Beisert, �The dynamical spin chain� Analysis of dilatation opera-
tor from the viewpoint of superconformal group.
♦ Beisert-Staudacher Spin chains for su(2, 2|4).
♦ Bena-Polchinski-Roiban Higher charges in the classical strings in
AdS5 × S5.
♦ Kruczenski Semiclassical limit of spin chain and strings.
♦ Arutyunov-Staudacher Matching of higher charges to one-loop
order.
♦ Dolan-Nappi-Witten I, II Shows one-loop dilatation commutes
with the Yangian
♦ Arutyunov-Russo-Tseytlin Reduction to Integrable systemsof strings
in AdS5 × S5.
♦ Kazakov-Marshakov-Minahan-Zarembo Generalmatchingbetween
strings and spins using complex curves.
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