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1. INTRODUCTION

� Consider type IIA on a CY

X : ALE singularity︸ ︷︷ ︸
Produces YM in 6d

�bered over sphere

; N = 2 SYM in 4d.

� Prepotential Fg=0 for this theory can be studied by two methods:

i) from the world-sheet point of view, or
ii) from the space-time point of view.
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World-Sheet

� Consider topological A-model on the same X:

Fg=0 = genus zero free energy of this theory

� For higher-genus amplitudes, there's a correspondence

log Z
(all-genus)
topological theory = g−2

s Fg=0 + Fg=1 + g2
sFg=2 + · · ·

F graviphoton corrected
physical theory = ~−2Fg=0 + Fg=1 + ~2Fg=2 + · · · .

(~ : magnitude of the bkg. graviphoton �eld strength)
(Bershadsky-Cecotti-Ooguri-Vafa, 9309140)
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� Fg is exactly calculable by a world-sheet technique called topo-
logical vertex for toric Calabi-Yau X.

� (Iqbal-KashaniPoor 0306032) (Eguchi-Kanno 0310235) calcu-
lated F for the following local toric CYs Xκ

N : ex) for N = 3

Many other local toric CY for pure U(N)

Distinct partition functions for each!

Clues:

"M-theoretic" IIA, A-model 

triple intersection of CY 

5-dim Chern-Simons term !

Five Dimensional

ex.) X
k
N=3

k = 0 1 2 3

 How can they match
with the Instanton Counting?
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� They are ALE �brations over S2, hence give 4d U(N) super Yang-
Mills.

3/35



Space-Time point of view

� Can we calculate Fg by spacetime instanton calculation ?
Nekrasov's � Instanton Counting�

� It was found that

F for Xκ=0
N = Fgraviphoton

corrected of

We call them 5d SYM with some abuse...︷ ︸︸ ︷
5d U(N) SYM compacti�ed on S1,

proposed in (Nekrasov 0206161).

(cf. F for 4d theory does not agree. S1 is the M-theory circle.)

� However, F for X
κ6=0
N does not agree.
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� This is as expected in hindsight, as M theory on CY comes with 5d
Chern-Simons interaction:∫

R5×CY
C ∧ dC ∧ dC =

∫
R5

cijkAi ∧ dAj ∧ dAk

where

cijk =

∫
CY

ωi ∧ ωj ∧ ωk, C = Aiω
i

� For X
κ6=0
N in the limit where the gauge group enhances, they give

κ

∫
CS[A] where dCS[A] ∝ trF ∧ F ∧ F

(Intriligator-Morrison-Seiberg 9702198)
� F for X

κ6=0
N can be reproduced by extending Nekrasov's instanton

counting to include this non-abelian CS. (Y.T. 0401184)
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A comment on Geometric Engineering

It may be obvious to the audience, but as it was surprising at least to
the speaker, so please allow me to stress:

type IIA
on non-compact CY

−→ theory without gravity︸ ︷︷ ︸
In 5d compacti�ed on S1 !

Because type IIA IS M-theory at �nite gs.

Indeed, we might have discovered M-theory by comparing

topological A model on local Calabi-Yaus
and

Seiberg-Witten theory for 5d SU(2) SYM...
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Another Comment: on Type II � Heterotic Duality

� The fact that the topological vertex and the instanton counting
gave exactly the same sequence of integers (Gopakumar-Vafa invari-
ants) is another stringymiracle. This indicates the Type II � Heterotic
duality holds for higher genera !

� It is natural to conjecture the extension to
C2/Γ �bered over S2 ⇔ 4d Γ instantons

for any Γ = An, Dn, En

� Another interesting avenue would be to study compact CYs. In-
deed, Heteroticwas extremely powerful for counting curves of higher
genera which do not wrap base CP1. (Mariño-Moore)
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YAC: this time on History (highly subjective)

Physical Camp: Dorey, Hollowood, Italian group,. . .
Determined the measure of the instanton
moduli by honest but tedius calculation...
Knew what they were computing,
but didn't know how to compute.

Topological Camp: Moore, Nekrasov, . . .
Studied the geometry of the instanton
moduli from mathematical viewpoint ...
Knew how to compute,
but didn't know what they were computing.

⇓
Realized they were computing
the SAME THING ( ∼ Jan. 2002)
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2. INSTANTON COUNTING AND FIXED-POINT THEOREM

Graviphoton-background

Firstly let us recall what's the graviphoton:

gµν in 5d
S1-cptfy

−→ gµν in 4d and Aµ = g5µ

Hence, constant background �eld strength for the graviphoton cor-
responds to the 5d geometry

ds2 = (dxµ)2 + (dx5 + Aµdxµ)2

with Ω = dA constant. Aµ = 1
2Ωµνxν

� S1 is �bered over R4.

� Denote the eigenvalues of Ω by ± ~.
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Ω-background

Consider another 5d background with metric

ds2 = (dxµ + Aµdx5)2 + (dx5)2

with the same Aµ as before. R4 is �bered over S1.

Ωµν

1

β

R4

1

R
4

1

(x5 ∈ [0, β])
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� We can show that

e−~−2Fgraviphoton corrected = Zon Ω bkg · · · F

for any 5d 8-susy theory,

� while Zon Ω can be expressed as

Zon Ω = tr(−)F e−βHeiβ~J

by considering the 5th direction as `time'.

None other than the Witten Index!

(J is one of the Lorentz generators.)
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Derivation of the relation F

When one puts 8-susy 5d theory on this background,
the graviphoton-corrected prepotential is given by

~−2F =
∑
i,r

Ni,rFr(ai) where Fr(a) =
∑
k>0

1

k
(2 sinh

k~
2

)2r−2e−ka

and

Ni,r :# of `hypermultiplets' with central charge ai

and left spin content Ir.

� Ir =
(
(1
2) ⊕ 2(0)

)r

� Derived by free �eld calculation (Gopakumar-Vafa).

13/35



� Put the same 5d theory on this background.
The partition function should have the form

Z =
∏
i,r

Zr(ai)
Ni,r.

� Free �eld calculation shows that, surprisingly,

Zr(a) = e−Fr(a).

Hence,

Zon Ω bkg. = exp(−~−2Fon graviphoton bkg.)

i.e., in order to calculate F , one can calculate Zon Ω instead.

End of Derivation
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Application to the SYM

� We have to encode the VEV of the adjoints.
� We can accomplish this by introducing Wilson lines around the
5th direction, because

4d adjoint scalar (complex) =

5d adjoint scalar (real) + Wilson lines.

� Hence, the object to calculate is

e−~−2F(a) = Zon Ω = tr(−)F e−βHeiβ~JeiβaiJi

where Ji: generators of global gauge rotation.
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Reduction onto the instanton moduli

Supersymmetries commuting ~J + aiJi remains
=⇒ only BPS con�gurations, i.e. 4d instantons contribute.
For k-instanton con�guration,

energy = kτ.

Thus,

Zon Ω =
∑
k≥0

e−βτk tr(−)F e−βHkeiβ~JeiβaiJi

Now Hk is the hamiltonian for

susy QM on the k-instanton moduli.
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SUSY QM on the instanton moduli

What kind of susy QM is it?
4 + 1 d ⇒ 0 + 1 d

kin. term → kin. term
CS term → coupling to external U(1)

withDimension of k instanton moduli = 4Nk (bosonic) + 4Nk (fermionic)

; 2Nk fermionic oscillators generate the spin bundle.

A comment

If N = 4, this will calculate the Euler number of the moduli. This is
essentially (Vafa-Witten 9408074). Hence,
Instanton counting = N = 2 version of the �Strong Coupling Test�.
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Fixed point theorem for the Witten index

In order to calculate Zon Ω, we utilize the
Atiyah-Bott-Lefshetz �xed point theorem.

[Setup]

� M : Spin manifold, J → M : a line bundle on M

� an action of a group element g = ea on M

� consider a susy QM with
its Hilbert space = sections of (spin bundle of M) ⊗ J

� We want to calculate

Z = tr(−)F e−βHea.

� This is β independent.
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� In β → ∞ limit, this becomes the character of the vacuum under
g.
� In β → 0 limit, centrifugal force restricts the contribution to
that from the neighborhood of the �xed points of g.
� Evaluation of Gaussian �uctuation reveals

Z =
∑

p:f.p.

ew
d/2∏
α=1

1

eiθα/2 − e−iθα/2
.

where
w: eigenvalue of a on J |p

iθα: eigenvalues of a on TM |p.

For physical proof, see (Goodman-Witten NPB271(1986)21)
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An Example

� Take M = S2 and J : charge n monopole con�guration

� Consider g = eiθ: rotating around the z direction

� The vacua forms spin n representation of SU(2)

; Z = einθ + ei(n−1)θ + · · · + e−inθ

� The �xed point theorem tells, as the �xed points are north and
south poles,

Z =
ei(n+1/2)θ

eiθ/2 − e−iθ/2
+

e−i(n+1/2)θ

e−iθ/2 − eiθ/2

They Agree!

20/35



Summary of this (rather lengthy) chapter

X e−~2F(a) = Zon Ω.

X Zon Ω =
∑
k>0

(Witten index of the k-instanton moduli).

X (Witten index) =
∑
f.p.

(contrib. from each f.p.).

� Hence, we need only to study
i) the structure of instanton moduli MN,k,
ii) the structure of U(1) bundle J on them,
iii) and the group action on TM and J .
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3. FIXED POINTS IN THE INSTANTON MODULI

ADHM construction of the Instanton Moduli

Consider the following system of branes:

0 1 2 3 4 5 6 7 8 9
k D3's − − − − • • • • • •
N D7's − − − − − − − − • •

N = 2 �eld theory on D3 is described by

L =

∫
d4θ(Φ†Φ + B

†
1eV B1 + B

†
2e−V B2)

+

∫
d2θ tr(IΦJ) +

∫
d2θ tr(B1[Φ, B2]) +

∫
d2θ trWαW α + c.c.
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where
Φ: k × k, position of D3s along 8,9

B1, B2 : k × k, position of D3s along 4,5,6,7
I, J†: k × N , from D3-D7 strings

The susy vacua describes

Coulomb phase: D3's and D7's are separated along 8,9
Higgs phase: D3's are absorbed on the D7s as instantons

in 4,5,6,7 directions
⇓

U(N)k-Instanton moduli ∼

{
[B1, B

†
1] + [B2, B

†
2] + II† − J†J = 0

[B1, B2] + IJ = 0.

}
U(k) gauge invariance
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Group Action on the instanton moduli

More invariantly, the ADHM data B1, B2, I, J can be considered as:(
B1 − B

†
2

B2 B
†
1

)
∈ V ∗ ⊗ V ⊗ R4, (I, J†) ∈ V ∗ ⊗ W ⊗ S+

where

S± : the Weyl spinor of SO(4)

V : Dirac zero modes in the fund. of U(N); there are k of them
W : U(N) �ber at spatial in�nity with dimension N

V transforms as fundamental under U(k).
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5d Chern-Simons term and the determinant line bundle

� Next we need to identify the U(1) bundle J coming from the 5d
CS term, but please recall...

This is known from the classic work on anomaly.
e.g. (Sumitani) (Alvarez-Gaumé and Witten).

� 5d non-abelian Chern-Simons term with unit coef�cient deter-
mines the determinant line bundle on the moduli space:

J
∣∣
Aµ(x)∈MN,k

=

highest∧
Ker(∂µ + Aa

µ(x)T a
fund.) = detV.
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Naïve analysis of the �xed points

� Eigenvalues of Bi are the centers of instantons
� They are rotated by J ; All centers should be at the origin
� Extremely singular: needs some regularization

⇓

U(N) non-commutative
k-Instanton moduli

∼

{
[B1, B

†
1] + [B2, B

†
2] + II† − J†J = ζr,

[B1, B2] + IJ = ζc.

}
U(k) gauge invariance

� Without loss of generality, we can set ζc = 0, ζr 6= 0.
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Noncommutative U(1), k-instanton case

� Let us concentrate on the eq. [B1, B2] + IJ = 0

� One can show J = 0.
� I = {P (z, w) ∈ C[z, w]

∣∣∣P (B1, B2) = 0} establishes 1-1 correspon-
dence

codimension k ideal of C[z, w] ⇔ U(1) NC k-instanton

� rotationally inv. ideal I are generated by monomials zawb.
; {(a, b)

∣∣zawb 6= I} makes a Young tableau with k boxes
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Example.

z0w0 z0w1 z0w2

z1w0 z1w1 z1w2

z2w0

z3w0

C[z, w]/I = span{1, w, w2, z, zw, zw2, z2, z3}
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U(N) k-instanton case.

� nonzero adjoint VEV ai 6= 0 ⇔ D7's are seperated along 8,9
⇓

� each of the D3s is absorbed on one of D7s
⇓

� U(1) ki-instanton for i-th D7 with
∑

ki = k

⇓
� N -tuples of Young tableaux with total k boxes
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Another view

� Take a f.p. p in MN,k and the ADHM data x which projects to p:

V ∗ ⊗ V ⊗ R4

⊕ V ∗ ⊗ W ⊗ S+ 3 x
only upto U(k)

= egx

///U(k)

−
→

−
→

−
→

MN,k 3 p = egp

(a = (~, {ai}) ∈ so(4) × u(N))

i.e. we need u(k) rotation φ(g) to achieve x = eφ(g)egx.

� k eigenvalues ofφ(g) is readily depicted using the Young tableaux:
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Example.

a1 a1 + ~ a1 + 2~

a1 − ~ a1 a1 + ~

a1 − 2~

a1 − 3~

a2 a2 + ~ a2 + 2~ a2 + 3~

a2 − ~ a2 a2 + ~

a2 − 2~ a2 − ~

� Note φ(g) can be identi�ed with the adjoint vev φ.
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Nekrasov's formula without 5d Chern-Simons

� We have �rst to determine the eigenvalues of ~J + aiJi on the
tangent space.
� They can be calculated by some hard work... One gets, for models
without 5d Chern-Simons,

e−~−2F(ai) =
∑
k

e−βτk
∑

(Y1,...,YN):
N Young tableaux
with total k boxes∏

(i,m) 6=(j,n)

sinh β
2(ai − aj + ~(yi,n − yj,m + m − n))

sinh β
2(ai − aj + ~(m − n))

where yi,n is the length of the i-th row of the N -th Young tableau.
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Nekrasov's formula with 5d Chern-Simons

� Recall the �xed point formula

Z =
∑

p:f.p.

ew
d/2∏
α=1

1

eiθα/2 − e−iθα/2
.

� Thus, in the presence of 5d Chern-Simons:

e−~−2F(ai) =
∑
k

e−βτk
∑

(Y1,...,YN):
N Young tableauxwith total k boxes

e♣

∏
(i,m) 6=(j,n)

sinh β
2(ai − aj + ~(yi,n − yj,m + m − n))

sinh β
2(ai − aj + ~(m − n))

where ♣ = eigenvalue of U(N) × SO(4) action on J |f.p..
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� Recall J |f.p. = (
∧highest KerD)⊗κ = detV ⊗κ. At a f.p.

p = eap ∈ M with a ∈ u(N) ⊕ so(4),

we saw

x = eφ(a)eax with φ(a) ∈ u(k)

for the corresponding ADHM data. Hence,

♣ = κtrφ(a) = κ
N∑

l=1

ai

∑
(i,j)∈Yl

1 + ~
∑

(i,j)∈Yl

(i − j)


� With this factor, F from Instanton Counting precisely agrees with
F for Xκ

N calculated using topological vertex.
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4. CONCLUSION

Summary

X Prepotential = the (generalized) Witten index of the theory.
X The Witten index can be evaluated by the localization.
X The �xed points are labeled by Young tableaux.
X 5d Chern-Simons corresponds to the determinant line bundle in
this framework.
X With this, the results agree with the results from the top. vertex.

Outlook

� Can one devise Instanton Counting method for any local toric CY?
� Can one devise Instanton Counting method for compact CYs?
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5. SEIBERG-WITTEN CURVE FROM THE YOUNG TABLEAUX

Does the Nekrasov's formula agree with good old result by Seiberg
and Witten?

We will see that they indeed agree, by transforming the Nekrasov's
formula to classical many body systems.

Let us �rstly recall the celebrated
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Seiberg-Witten theory

Exact low energy Lagrangian for d = 4, N = 2 SU(N) SYM...

� VEVs of the adjoint scalar breaks SU(N) → U(1)N−1

� N = 2 U(1)N−1 theory is described by a single holomorphic func-
tion F(a1, . . . , aN−1):

L =
1

4π
Im

(∫
d4θ

∂F
∂ai

a
†
i +

∫
d2θ

1

2

∂F
∂ai∂aj

WiWj

)
� F can be determined by exploiting holomorphy and the duality
symmetry.
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Take a hyperelliptic

y +
1

y
=

P (x)

ΛN

with deg P (x) = N and take

ai =

∮
Ai

dS, ai
D =

∮
Bi

dS

where Ai and Bi form canonical bases of one cycles,

dS = xdy/y : the SW differential .

Then, F can be determined from

ai
D =

∂F
∂ai

.
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A1

1

A2

1

AN

1

B1

1

B2

1

a+1

1

a+2

1

a+N

1

a−N

1

a−1

1

a−2

1
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F is de�ned highly implicitly. After some work, we get

F =
N

πi

∑
a2

k : Bare term

+
i

4π

∑
i<j

(ai − aj)
2 log

(ai − aj)
2

Λ2
: One-loop term

+
∞∑

m=1

Λ2Nm

2mπi
F(m)(a) : Instanton corrections

� From the RG eq. ,

Λ = Λ0e

π
N i

(
θ
2π+i4π

g2
0

)
, thus Λ2Nk ∼ eikθ

which is appropriate for k-instanton contribution.
� Can we calculate F(m) by instanton calculus?
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� De�ne fY (x) for a Young tableau by

fY (x) = |x| +
∑
i

(
|x − ~yi + ~(i − 1)|

− |x − ~yi + ~i| + |x + ~i| − |x + ~(i − 1)|
)
.

Y = (4 ≥ 2 ≥ 1)

1

x

1

fY(x)

1
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� Furthermore, de�ne for ~Y = (Y1, . . . , YN) the function f~Y
by

f~Y
=
∑
i

fYi
(x − ai).

� Then, Nekrasov's formula can be cast in the form

ZpertZon Ω =
∑
f~Y

exp

(
−

1

4

∫
dxdyf ′′(x)f ′′(y)γ~(x − y)

)
where

log
x

Λ
= γ~(x + ~) + γ~(x − ~) − 2γ~(x)

Zpert = exp

∑
k,l

γ~(al − an)

 .
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� In the limit ~ → 0, it becomes

ZpertZon Ω =
∑
f~Y

exp(−
1

~2
E[f~Y

])

where

E[f~Y
] =

1

8

∫
dxdyf ′′(x)f ′′(y)(x − y)2

(
log

(
x − y

Λ
−

3

2

))
� Hence, the con�guration f0 which maximizes E[f ] dominates the
sum and

F(ai) = lim
~→0

~2 log Z = E[f0].

� Note that ai's and N are encoded in the asymptotic behavior of
f~Y
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� It is convenient to Legendre-transform in ai.
Using the function

ξ(x) =

{
ξlx x is near al
smoothly interpolating otherwise

We get
∑

i ξiai =
∫

ξ(x)f ′′(x)dx. Hence we have to minimize

S[f ] = −
1

8

∫
dxdyf ′′(x)f ′′(y)(x − y)2

(
log

(
x − y

Λ

)
−

3

2

)
+

1

2

∫
ξ(x)f ′′(x)dx.

i.e. ∫
dy(y − x)

(
log

(|x − y|
Λ

)
− 1

)
f ′′(y)︸ ︷︷ ︸

≡ g(x)

= ξ′(x) · · · ♣.
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� Consider φ(x) = f ′(x) + g′(x)/(πi). Differentiating ♣, we get

φ(x)′ = Imφ(x)′︸ ︷︷ ︸
=f ′′(x)

+i

∫
dy

x − y
Imφ(y)′.

; φ(x) can be holomorphically extended to upper half plane.
� Boundary behavior of φ(x) is �xed by ♣:

ϕ(x)

1

−N

1

−N + 1

1

N

1

N − 1

1

· · ·

1

· · ·

1
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Hence,

φ(z) =
2

πi
log w where w +

1

w
=

Q(z)

ΛN

for some N .

w

1-1

2-2

Q(z)

1
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� ai can be recovered from f :

ai =
1

2

∫
near ai

xf(x)′′dx =
1

2πi

∮
Ai

z
dw

w︸ ︷︷ ︸
SW differential !

� The SW curve appeared as one solves the maximization problem.
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