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Question

Can we do microscopic 
instanton calculation in d=4 

N=2 exceptional gauge theory ?



Seiberg-Witten Theory
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• A way to give the Exact Low Energy 
Lagrangian for various d=4 N=2 theories 
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Instanton Expansion

• The prepotential can be expanded as
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•        should be given by the integral over 
the k-instanton moduli

• [Nekrasov] identified

• Thus, one can use localization

•       for SU(n) can be expressed as the 
summation over ‘fixed’ instantons,
labeled by n-tuples of Young tableaux.

Microscopic Calculation

Witten Index of the
SUSY QM

on the moduli
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• Enumeration of fixed instantons is difficult 
except SU(n)

• the ADHM matrix model method is 
extensible to other classical gauge groups  

A, B, C, D of Instantons

An = SU(n + 1), Bn = SO(2n + 1),

Cn = Sp(2n), Dn = SO(2n)

[Nekrasov-Okounkov][Nekrasov-Shadchin]



What about E, F, G ?

• Generic properties is known, but

• No explicit construction of moduli

• One can generalize the approach by 
[Nakajima-Yoshioka], which only uses 
generic properties !



Blowup !
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fixed instantons has the same
structure as R4

[Nakajima-Yoshioka]



Hence, 
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Integration
on the moduli

[Nakajima-Yoshioka]



are almost the same.

Furthermore,
Standard Fact in Donaldson Theory:

Instanton moduli on Instanton moduli on
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[Nakajima-Yoshioka]



• This is the Contact Term Equation derived 
using low-energy TQFT argument by 
[Losev-Nekrasov-Shatashvili] 

• Recursively determines the prepotential
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[Nakajima-Yoshioka]



What we did

• Extension to E, F, G

• Extension to theories with massless hypers

• Checks against one-instanton result by [Ito-
Sasakura]

• Checks against one-instanton result for SU
(n), Sp(n) with (anti)-symmetric

n.b.  SW curves are not hyperelliptic.



Sp(n) with an antisymmetric

Application
n D3-branes probing O7

F(a1, . . . , an) = FSU(2)(a1) + · · · + FSU(2)(an)

Instanton
Calculation

They move independently !



Conclusion

• The Contact Term Equation is derived using 
microscopic instanton calculus for exceptional 
gauge groups

• Generalizable to theories with hypermultiplets

• It recursively determines the instanton 
expansion of the prepotential

• It can be and has been checked against 
Seiberg-Witten-type analysis



Outlook

• Derive the contact term equation for E, F 
and G from the Seiberg-Witten curve

• Whitham-type analysis on non-hyperelliptic 
is necessary

• If you are interested, please tell me !


