0/10

Vacuum counting in Multi-parameter Models

東大本郷 江口徹, 立川裕二

to appear

String Theorists' Holy Grail:

Construct the Standard Model+Inflation inside String/M-theory However: Many Moduli (Gauge-neutral massless scalar particles) **Recent Progress!** Type II B on a Calabi-Yau orientifold + NSNS, RR fluxes complex structure Kahler moduli moduli $W = \int \Omega_{(3,0)} \wedge (\tau H_{NSNS} + H_{RR}) \qquad W = \sum \exp(-\langle C_i, \rho \rangle)$ **D-brane instanton/ Gukov-Vafa-Witten Gaugino Condensation** FIXED! FIXED!

[Kachru-Kallosh-Linde-Trivedi, 0301240]

is not feasible !

Douglas' Copernican Revolution

Douglas et al. 0303194,0307049

Study the statistical properties of the ensemble of vacua!

Distribution of ...

vacua on the 'moduli space'

O the cosmological constant

Take:

Kahler potential: **given and fixed** Superpotential: **random**

with correlation

 $\langle W(\phi_1)W(\phi_2)^*\rangle = e^{-K(\phi_1,\phi_2^*)}$

Consistent with Kahler transformation

Satisfied by the Gukov-Vafa-Witten superpotential with monodromy-invariant flux ensemble

Distribution function of AdS supersymmetric vacua:

 $\rho_{vac}(\phi) = \langle \delta(D_i W(\phi)) | \det(\partial_i D_j W) | \rangle$

Behavior of the index density

Instead, consider

Huge enhancement at Curvature Singularity!

Consider: type IIB on one-modulus CY with flux, Denef-Douglas, 0404116 Giryavets-Kachru-Tripathy, 0404243

Near the conifold point, ($\phi = 0$)

Maybe good for stringy inflation...

• Extension to **multiple moduli**

(mirror of) degree 8 hypersurface in

 $\mathbb{WCP}^4_{1,1,2,2,2}$

Different types of **singularities**

Large Complex Structure Limit

Large Radius Limit of the mirror CY

Geometric Engineering Limit

Low Energy Super Yang-Mills decouples

Argyres-Douglas Point

"Electron" and "Monopole" become simultaneously massless

Is the integral always convergent?

Around Conifold Locus, YES.

$$\frac{1}{8}x_1^8 + \frac{1}{8}x_2^8 + \frac{1}{4}x_3^4 + \frac{1}{4}x_4^4 + \frac{1}{4}x_5^4 - \psi_0 x_1 x_2 x_3 x_4 x_5 - \frac{1}{4}\psi_s (x_1 x_2)^4 = 0$$

Denote

$$\epsilon = rac{1}{2\psi_s}$$
 ,
 $u = \psi_s + \psi_0^4$

 $\epsilon \to 0, u \to \text{finite}$ Geometric Engineering Limit $|\epsilon|^{1/2} \log |1/\epsilon|$: dynamical scale of SU(2) SYMu: Seiberg-Witten's u

 $\epsilon \to 0, (\epsilon u)^{-1} \to 0$ Large Complex Structure Limit

 $-\log\epsilon$, $\log(\epsilon u)$

:area of two 2-cycles of the mirror

For fixed ϵ , \mathcal{U} takes value in \mathbb{CP}^1

Let us look at u dependence with $\epsilon = 0.001$

in $WCP_{1,1,2,2,2}^4$

 $u \sim 0$

 $u \sim \infty$

$$\det(R+\omega) \sim \frac{1}{|\epsilon|^1 (\log|\epsilon|)^3}$$

if

$$1/\epsilon \gg u \gg 1$$
.

Mathematicians are actively investigating these convergence properties !

- O Taking **the Kahler moduli** into account
- **O Phenomenological** application
- Convergence properties of the index density
- What's the **correct** *a priori* **probability?**
- What's the correct interpretation of multi-valued superpotential