Distribution of Vacua in

Calabi-Yau Compactification

Yuji Tachikawa

(Particle Theory Group, Univ. of Tokyo, Hongo)

based on JHEP 01 (2006) 100 (hep-th/0510061) by Tohru Eguchi and YT

March, 2006 @ UTAP, Hongo

CONTENTS

- \Rightarrow 1. On the Landscape & the Swampland
 - 2. Flux Compactification
 - ♦ 3. Statistics of Vacua
 - 4. Monodromy and Vacuum Density
 - 5. Summary & Comments

1. String Theory Landscape & Swampland

- Quantization of gravity
 - because it's challenging
 - because it will be needed soon

spectral index of primordial fluctuation

- Candidates (generally covariant + quantum mechanical):
 - String (or M) theory
 - Loop Quantum Gravity ... Pure metric theory.

String / M theory

- Not originally meant to quantize gravity
- ♦ Worldlines ⇒ Worldsheets
- ♦ Consistency ⇒ 10 D + graviton
- Many higher-dim'l solitons, branes, which support gauge fields

Compactification

- \diamond 10D \Rightarrow 4D Minkowski + very small 6D space
- Many consistency conditions.
- Semi-realistic models:
 - Supersymmetrized Standard Models +
 - Hidden sector for dynamically breaking SUSY
 - Axion, etc...

which is a triumph for string theory.

Presence of Moduli.

Status

- No experimental tests.
- Rich as a theoretical model
 - natural setting for various QFT phenomena
 (ADHM, Seiberg-Witten, Montonen-Olive duality etc.)
 - natural setting for various higher-dim'l SUGRA
 - microscopic account of entropy of BPS black holes
 - predicted many nontrivial mathematical results
- Unified most of the research on QFT & SUGRA practitioners

Moduli Fields

- Neutral, light field with only Planck-suppressed interaction
- \diamond How light? \Rightarrow massless or SUSY br. or Hubble
- Corresponding to the 'moduli' of the compactification manifold
- moduli (pl.) modulus (singl.):
 parameter(s) in the pure math jargon.
- VEV of moduli field determines the shape & size of the internal manifold.
- Shape & size determines the Yukawa/gauge couplings.

Moduli Problem

- ♦ Massless scalar ⇒ 5th force
- \diamond Susy breaking will make them massive $\sim M_{sb}$,
 - Overproduced in preheating
 - decay after BBN

etc.

Need to make it much heavier!

Moduli Fixing in String theory

- Vexing problems for a long time
 - Consistency forbids introduction of potentials by hand
- Flux compactification + D-brane Instanton Correction saved the day.
- Roughly speaking,
 - Flux inside internal mfd. ⇒ Tend to spread
 - D-brane wrapping inside internal mfd. \Rightarrow Tend to shrink
- \Rightarrow Shape & Size fixed.

- # of choices of flux are HUGE!!
 - Holes in Calabi-Yau: $100 \sim 200$
 - Flux per hole is integral,
 - with upper bound ~ 100
- $\Rightarrow 100^{100}$ of choices
- ♦ Flux given ⇒ Moduli fixed
 - ⇒ Shape & size fixed ⇒ Yukawa & gauge coupling
- Huge # of densely-distributed realizable couplings.
- Huge landscape of 4d vacua.

Really?

- Opinion varies:
 - Yet-to-unknown consistency condition \Rightarrow unique solution?
 - 介
 - Let's analyze models at hand statistically!
 - \Downarrow
 - Any 4d Lagrangian can be UV-completed with gravity!

Swampland (Vafa)

Q. Which 4d Lagrangian is OK?

- we'd like to argue without the long detour into
 10d string, Calabi-Yau, fluxes and all that messy stuffs.
- Anomaly cancellation.
 - Certain gauge groups & matter contents are not allowed.
- Upperbound on the rank of gauge groups
- Gravity should be weaker than gauge coupling (Arkani-Hamed-Motl-Nicolis-Vafa, hep-th/0601001)

CONTENTS

- ✓ 1. On the Landscape & the Swampland
- \Rightarrow 2. Flux Compactification
 - 3. Statistics of Vacua
 - 4. Monodromy and Vacuum Density
 - ♦ 5. Summary & Comments

2. Flux Compactification

d=4, $\mathcal{N}=1$ Supergravity

- $lack \{Q_lpha,Q_eta\} = \gamma^\mu_{lphaeta}P_\mu \ lack (g_{\mu
 u},\psi_\mu)$

 - $\bullet \quad (A_{\mu}^a, \lambda_{\alpha}^a)$
 - $(\psi^i_{\alpha}, \phi^i)$
- \diamond P_{μ} gauged $\Rightarrow Q_{\alpha}$ gauged
- \diamond ϕ^i are complex scalars, $G_{iar{\jmath}}$ and V restricted in

$$\int d^4 x \sqrt{g} \left(G_{iar{\jmath}}(\phi,ar{\phi}) \partial_{\mu} \phi^i \partial_{\mu} ar{\phi}^{ar{\jmath}} + V(\phi,ar{\phi})
ight)$$

 \diamond $K(\phi, \bar{\phi})$: Kähler potential , $W(\phi)$: superpotential \Rightarrow

$$egin{aligned} G_{iar{\jmath}}(\phi,ar{\phi}) &= \partial_iar{\partial}_{ar{\jmath}}K(\phi,ar{\phi}), \ V(\phi,ar{\phi}) &= e^K\left(G^{iar{\jmath}}D_iW(\phi)ar{D}_{ar{\jmath}}ar{W}(ar{\phi}) - 3|W(\phi)|^2
ight) \ D_iW(\phi) &= (\partial_i + (\partial_i K))W \end{aligned}$$

Kähler transformation:

$$K(\phi, \bar{\phi})
ightarrow K(\phi, \bar{\phi}) + f(\phi) + \bar{f}(\bar{\phi}) \ W(\phi)
ightarrow e^{-f(\phi)} W(\phi) \ D_i W(\phi)
ightarrow e^{-f(\phi)} D_i W(\phi)$$

leaves $G_{iar{\jmath}}$ and $V(\phi,ar{\phi})$ invariant.

10d IIB supergravity

$$e^{-\phi}$$
, C , $g_{\mu
u}$, $H^{ extsf{NSNS}}_{[\mu
u
ho]}=\partial_{[\mu}B^{ extsf{NSNS}}_{
u
ho]}, \qquad H^{ extsf{RR}}_{[\mu
u
ho]}=\partial_{[\mu}B^{ extsf{RR}}_{
u
ho]},$

$$F_{[\mu
u
ho\sigma au]}=\partial_{[\mu}C_{
u
ho\sigma au]}$$
 with constraint $F_{[\mu
u
ho\sigma au]}=\epsilon_{\mu
u
ho\sigma aulphaeta\epsilon}F^{[lphaeta\gamma\delta\epsilon]}$,

+fermions

An important coupling:
$$\int C_{(4)} \wedge H_{(3)}^{ extsf{NSNS}} \wedge H_{(3)}^{ extsf{RR}}$$

Branes

- \diamond point-like objects couple to A_{μ} via $\int_{
 m worldline} dx^{\mu} A_{\mu}$
- objects extended in p-direction couple to (p+1)-form fields via

$$\int_{\mathsf{Worldvolume}} dx^{\mu_0} \cdots dx^{\mu_p} C_{[\mu_0 \cdots \mu_p]}$$

- $\diamond \quad \int C_{(4)} \wedge H_{(3)}^{ extsf{NSNS}} \wedge H_{(3)}^{ extsf{RR}} \Rightarrow H^{ extsf{NSNS}} \wedge H^{ extsf{RR}} ext{ has D3-brane charge}$

Calabi-Yau compactification

- ♦ 10=4+6
- \diamond 6-dimensional CY = the holonomy $SU(3) \subset SO(6)$
- \Rightarrow CY : complex mfd $x^1, x^2, x^3, x^4, x^5, x^6 \rightarrow z^1, z^2, z^3, \bar{z}^{\bar{1}}, \bar{z}^{\bar{2}}, \bar{z}^{\bar{3}}$, with Kähler form ω , everywhere nonzero (3,0) form Ω
- \diamond 6d spinor 4 = 3 \oplus 1 under SU(3)
- \Rightarrow 1/4 of SUSY remain \Rightarrow Type IIB/CY : $\mathcal{N}=2$
- \diamond No gauge fields \Rightarrow put $extstyle{ extstyle D-branes}$ \Rightarrow breaks SUSY to $extstyle{ extstyle N-branes}$

Moduli in CY compactification

- CYs come in various topological types:
 - $h_{1,1}$ two-cycles, $h_{1,1}$ four-cycles
 - ullet $2h_{1,2}+2$ three-cycles: $A_0,A_1,\ldots,A_{h_{12}}$ and $B_0,B_1,\ldots,B_{h_{12}}$ so that $A_i \cdot B_j = \delta_{ij}$ and $A_i \cdot A_j = B_i \cdot B_j = 0$
- CYs can be continuously deformed, parametrized by
 - $ho_i=\int_{C_i}\omega\wedge\omega$: sizes of four-cycles for $i=1,\dots,h_{11}$ $z_i=\int_{A_i}\Omega$: periods of three-cycles for $i=1,\dots,h_{12}$

- \diamond The metric of CY varies as ho_i and z_i : $g_{mn}(
 ho_i,z_i)$
- → 10d metric :

$$ds^2 = \eta_{\mu
u} dx^\mu dx^
u + g_{mn}(
ho_i(x^\mu), z_i(x^\mu)) dx^m dx^n$$

 $\diamond \;\;\;$ Plug this into $S=\int dx^{10} \sqrt{g_{(10)}} R_{(10)} \!\!\! \Rightarrow$

$$egin{aligned} S &= \int dx^4 \sqrt{g_{(4)}} R_{(4)} + \ &+ \int dx^4 \sqrt{g_{(4)}} g^{\mu
u}_{(4)} G_{iar{\jmath}} \partial_{\mu} oldsymbol{
ho}^{ar{\imath}} \partial_{
u} ar{ar{
ho}}^{ar{\jmath}} + \int dx^4 \sqrt{g_{(4)}} g^{\mu
u}_{(4)} G'_{iar{\jmath}} \partial_{\mu} oldsymbol{z}^{ar{\imath}} \partial_{
u} ar{ar{z}}^{ar{\jmath}} \end{aligned}$$

 \diamond ho^i combines with $\int_{C_i} C^{(4)}$ to become a complex scalar

$$ho_{ ext{complexified}}^i = i \int_{C_i} \omega \wedge \omega + \int_{C_i} C^{(4)}$$

 \diamond $h_{11}+h_{12}$ massless complex scalars in total

• ρ_i : called size moduli or Kähler moduli

- z_i : called shape moduli or complex structure moduli
- \diamond Axio-dilaton $au=ie^{-\phi}+C^{(0)}$ is also a modulus.

Superpotentials for Moduli

- \diamond Just compactifying on CY leads to W=0 \Rightarrow V=0.
- Masses to all moduli
- \Rightarrow We need W depending all variables τ , ρ_i , z_i .
 - Fluxes give W for au and z_i 's
 - Instanton corrections give W for ρ 's

(Kachru-Kallosh-Linde-Trivedi hep-th/0301240)

Let's see each in detail.

Flux superpotential

- \diamond Type IIB has **2-form potentials** $B_{
 m NSNS}$ and $B_{
 m RR}$ with **3-form** field strengths $H_{
 m NSNS}$ and $H_{
 m RR}$
- Quantized fluxes through three-cycles
- They give rise to

$$\begin{split} W &= \int_{CY} \Omega \wedge (H_{\text{RR}} + \tau H_{\text{NSNS}}) \\ &= \sum_{i=0}^{h_{12}} \left[\int_{A_i} \Omega \int_{B_i} (H_{\text{RR}} + \tau H_{\text{NSNS}}) - \int_{B_i} \Omega \int_{A_i} (H_{\text{RR}} + \tau H_{\text{NSNS}}) \right] \\ &= \sum_{i=0}^{h_{12}} \left[z_i (N_i^{\text{RR}} + \tau N_i^{\text{NSNS}}) - \frac{\partial F}{\partial z_i} (M_i^{\text{RR}} + \tau M_i^{\text{NSNS}}) \right] \end{split}$$

Comments

$$W = \sum_{i=0}^{h_{12}} \left[z_i (N_i^{ extsf{RR}} + au N_i^{ extsf{NSNS}}) - rac{\partial F}{\partial z_i} (M_i^{ extsf{RR}} + au M_i^{ extsf{NSNS}})
ight]$$

- This depends on string coupling and shape, not on the size.
- $\diamond N_i$ and M_i are the number of fluxes, hence integers
- Linear in Fluxes.

- This form for W: obtainable by a standard KK reduction;
- or, from the domain-wall tension (Gukov):
 - Wrap (p,q) 5-brane on A_i :
- ⇒ a BPS domain wall in 4d point of view.
- \Rightarrow The tension should be $\left|\dot{W}|_{\infty}-W|_{-\infty}
 ight|$ from 4d SUGRA. • The tension is $\left|(p+ au q)\int_{A_i}\Omega
 ight|$, from the (p,q)-brane action.
 - p units of H_{RR} and q units of H_{NSNS} through B_i .

$\Rightarrow W$!

Constraint on N_i and M_i

- \diamond A term $\int {m C^{(4)}} \wedge H_{
 m NSNS} \wedge H_{
 m RR}$ in type IIB sugra.
- \diamond Of course there is a coupling $\int_{D3} C^{(4)}$.
- \diamond Another coupling $-\int_{O3} C^{(4)}$ to Orientifold planes.
- \Rightarrow EOM for $C^{(4)}$ leads

$$egin{aligned} \#_{O3} &= \#_{D3} + \int H_{\mathsf{RR}} \wedge H_{\mathsf{NSNS}} \ &= \#_{D3} + \sum_{i=0}^{h_{12}} \left[N_i^{\mathsf{RR}} M_i^{\mathsf{NSNS}} - M_i^{\mathsf{RR}} N_i^{\mathsf{NSNS}}
ight] \end{aligned}$$

 \diamond #_{O3} is fixed by the geometry of CY.

Instanton corrections

- \diamond Superpotentials for the size moduli ho^i : How?
- \diamond wrapping N D7-branes on a 4-cycle C_i
- $ightarrow \mathcal{N} = 1~U(N)$ gauge theories with coupling constant ho^i
- \Rightarrow Superpotential $\sim e^{-i
 ho^i/N}$

associated with gaugino condensation.

- \diamond D3-brane instantons wrapping C_i .
- \Rightarrow Contributes $\propto e^{-i
 ho^i}$ to the superpotential if the # of the fermionic zero-modes is appropriate.

♦ ∃ CYs with sufficiently generic instanton corrections (Denef-Douglas).

Closed string moduli are FIXED!

Caveats:

• Their discussion was based on (Witten): in which $H_{\mathsf{RR}} = H_{\mathsf{NSNS}} = 0$.

• No definite treatment yet on D-brane instantons with nonzero H.

ullet Correction to K(
ho,ar
ho) might have bigger effects. (Conlon-Quevedo)

Further caveats:

Fluxes + Instantons make 4d supersymmetric AdS solutions.

Some other mechanism necessary to make de Sitter vacua.

which is unfortunately less controllable.

CONTENTS

- ✓ 1. On the Landscape & the Swampland
- ✓ 2. Flux Compactification
- \Rightarrow 3. Statistics of Vacua
- 4. Monodromy and Vacuum Density
- 5. Summary & Comments

3. Statistics of Vacua: Theory

- \diamond We used fluxes H_{RR} and H_{NSNS} .
- \diamond In a typical CY, there're $100\sim200$ 3-cycles to put fluxes;
- LHS of the tadpole constraint

$$\#_{O3} = \#_{D3} + \int H_{\mathsf{RR}} \wedge H_{\mathsf{NSNS}}$$

is of order $1000\sim5000$.

- \diamond SUSY requires $\#_{D3} \geq 0$ and the quadratic form positive definite
- $\Rightarrow \sqrt{4000} \sim 100$ choices for each three-cycle

$$10^{100} \sim 10^{200}$$
 choices of fluxes!

- ♦ Gauge group & matter contents : ← topology of the CY
 - Form of the low energy lagrangian.
- ♦ Coupling constants ← the moduli ← Flux
 - Coefficients of the low energy lagrangian
- Once you construct the SM (+ susy + inflatons etc.),
 there'll be plethora of vacua with slightly differing Yukawas!

- Need the distribution of Yukawas / Cosmological constants
- which are determined by the moduli
- ⇒ We need the distribution of the moduli!
- Fixed moduli depends on the flux ...
- \Rightarrow Need the distribution of H_{RR} and H_{NSNS} .

We don't know yet.

- Fluxes change when we cross domain walls.
- → Flux distribution is tied to the dynamics of domain walls in the extremely early universe before inflation!
- So we can't study realistic distribution of flux. Period.

As a zeroth approximation,

 \diamond We try a gaussian ensemble of the fluxes $H_{\sf RR}$ and $H_{\sf NSNS}$:

$$N_i = \int_{A_i} (H_{\mathsf{RR}} + au H_{\mathsf{NSNS}}), \qquad M_i = \int_{B_i} (H_{\mathsf{RR}} + au H_{\mathsf{NSNS}}).$$

 \diamond Under a large fluctuation, we have monodromies acting on (N_i,M_i) :

$$egin{pmatrix} egin{pmatrix} N_i \ M_i \end{pmatrix} \mapsto egin{pmatrix} A & B \ C & D \end{pmatrix} egin{pmatrix} N_i \ M_i \end{pmatrix}$$

which respects the pairing $(N_i, M_i) \cdot (N_i', {M_i}') = \sum_i (N_i {M_i}' - {N_i}' {M_i})$

Assume the ensemble to be monodromy invariant.

 \diamond Distribution of $W(z) = N_i z_i - M_i rac{\partial F}{\partial z_i}$ \Rightarrow

$$egin{aligned} raket{W(z)W(w)^*} & \propto \sum_i \left[z_i \left(rac{\partial F}{\partial w_i}
ight)^* - w_i^* \left(rac{\partial F}{\partial z_i}
ight)
ight] \ &= e^{-K(z,w^*)}, \ raket{W(z)W(w)} &= 0 \ raket{W(z)^*W(w)^*} &= 0 \end{aligned}$$

 $\langle W(z)W(w)^*
angle \propto e^{-K(z,w^*)}$ is very natural , because it transforms covariantly under the Kähler transform:

$$K(z,z^*)
ightarrow K+f(z)+f^*(z^*), \qquad W(z)
ightarrow e^{-f(z)}W(z)$$

 \diamond We can study the behavior of ${\cal N}=1$ supergravity system with random superpotential

with
$$\langle W(z)W(w)^*
angle \propto e^{-K(z,w^*)}$$
 .

Huge literature on systems with random potential (not superpotential)
 in condensed matter physics. We should utilize them...

Distribution of Vacua

- \diamond Supersymmetric Vacua are defined by $D_i W = 0$.
- \Rightarrow Expected number of vacua at z_i is given by

$$ho(z,ar{z}) = \langle \delta(D_iW(z))\delta(ar{D}_{ar{\imath}}W(ar{z})^*) \left| \det egin{pmatrix} \partial_iD_jW & \partial_iD_{ar{\jmath}}W^* \ \partial_{ar{\imath}}D_{ar{\jmath}}W & \partial_{ar{\imath}}D_{ar{\jmath}}W^* \end{pmatrix}
ight|
angle$$

- \diamond Determinant needed to count each vacua with weight +1.
- Absolute value makes evaluation harder; instead consider

$$ilde{
ho}(z,ar{z}) = \langle \delta(D_iW(z))\delta(ar{D}_{ar{\imath}}W(ar{z})^*)\detegin{pmatrix} \partial_iD_jW & \partial_iD_{ar{\jmath}}W^* \ \partial_{ar{\imath}}D_{ar{\jmath}}W & \partial_{ar{\imath}}D_{ar{\jmath}}W^* \end{pmatrix}
angle$$

 \diamond This counts vacua with signs ± 1 .

- \diamond $ilde{
 ho}$ can be calculated using Wick's theorem.
- ♦ The result is,

$$ilde{
ho}(z)\prod_i dz^i\wedge dar{z}^{ar{\imath}} \propto \detrac{1}{2\pi}(R^i{}_j+\delta^i{}_j\omega)$$

where

$$R^i{}_j = R^i{}_{ikar{l}} dz^k \wedge dar{z}^{ar{l}}, \qquad \omega = rac{i}{2} g_{iar{\jmath}} dz^i \wedge dar{z}^{ar{\jmath}}$$

is the curvature and the Kähler form of the moduli space.

A mathematical comment

- \diamond Let M compact n dim'l Kähler and nonsingular,
- \diamond E a n dim'l vector bundle on M.
- \Rightarrow A generic section of E have $\int_M e(E)$ zeros, when counted with signs, where e(E) is the Euler class.
- $\diamond \quad e(E) = \det R_E$ via the Chern-Weil homomorphism.
- $\diamond \quad D_i W$ is a section of $TM \otimes H \Rightarrow$

$$\int_{M} \det R_{TM \otimes H} = \int_{M} \det (R_{TM} + R_{H}) = \int_{M} \det (R_{TM} + \omega)$$

 \diamond In supergravity M is noncompact and singular!

Physical Comments

- \diamond Suppose there're no curvature : $R=0. \Rightarrow ilde{
 ho} \propto \det \omega$
- ⇒ the vacua distribute uniformly following the volume.
- \diamond Vacua tends to cluster around where the curvature R is large.
- Recall we're discussing the curvature of the moduli space.
- Curvature of the moduli is large \(\infty\) the curvature of the CY is large.
- ⇒ Strongly curved extra dimension is favored.

Examples

- \diamond To visualize $ilde{
 ho}$,
- \diamond We need to calculate $g_{iar{\jmath}}$ and $R^i{}_j$:

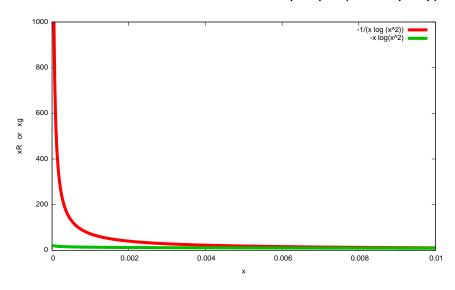
$$g_{iar{\jmath}} = \partial_i ar{\partial}_{ar{\jmath}} K, \qquad R^i_{jkar{l}} = \partial_{ar{l}} g_{jar{m}} \partial_k g^{ar{m}i}$$

- ⇒ Consult the mirror symmetry literature,
- \Rightarrow Plug into the formula for $\tilde{\rho}$,
- ⇒ Now you have a distribution of vacua!

Near Conifold Singularity(Denef-Douglas, Giryavets-Kachru-Tripathy)

- \diamond where a 3-cycle collapses. Call it A_1 .
- \diamond Let $\phi \equiv X_1 \Rightarrow F_1 \sim \phi \log \phi$:

$$g_{\phi\phi^*}\sim \log(|\phi|^2), \qquad R_{\phi\phi^*}\sim rac{1}{|\phi|^2(\log|\phi|)^2}\gg g_{\phi\phi^*}$$



Two param. example (Eguchi-Y.T., unpublished)

 \diamond Took two-modulus CY: degree 8 hypersurface in $\mathbb{WCP}^4_{1,1,2,2,2}$ with

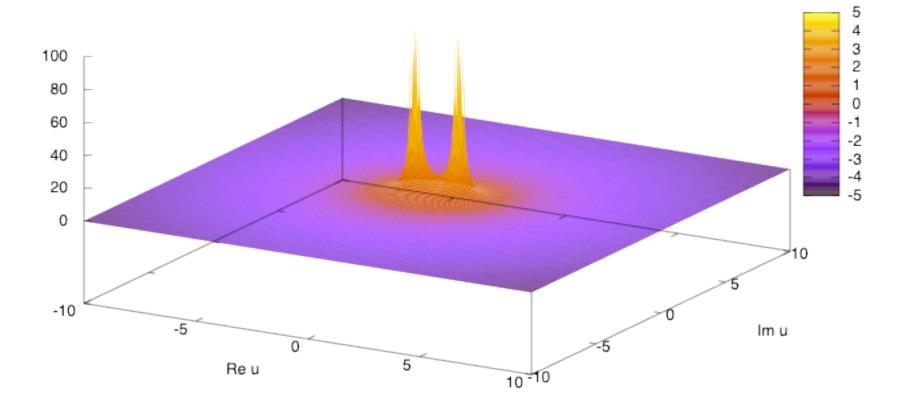
$$\frac{1}{8}x_1^8 + \frac{1}{8}x_2^8 + \frac{1}{8}x_3^4 + \frac{1}{8}x_4^4 + \frac{1}{8}x_5^4 - \psi_0 x_1 x_2 x_3 x_4 x_5 - \frac{1}{4}\psi_s (x_1 x_2)^4 = 0$$

- \diamond geometric engineering limit where the pure SU(2) SYM decouples from supergravity.
- \diamond Denote $\epsilon=1/(2\psi_s)$ and $u=\psi+\psi_0^4.$ When $\epsilon o 0$,

 $\epsilon^{1/2}$: Dynamical Scale of SYM measured in Planck units;

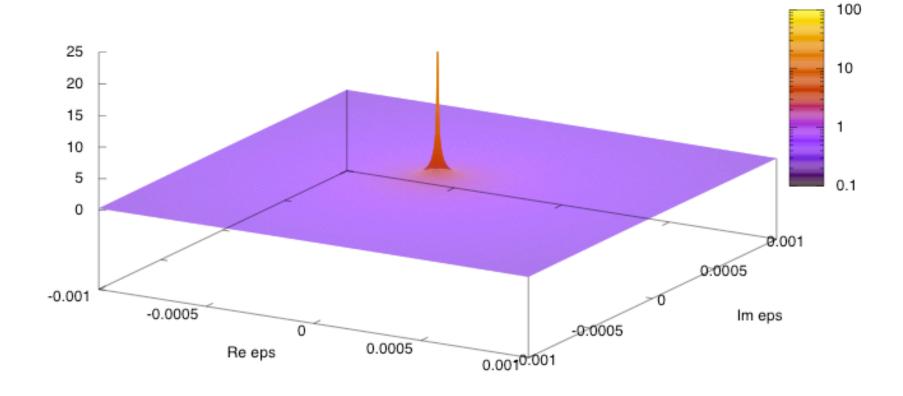
u: Seiberg-Witten's u.

$\epsilon=0.001$, u : finite



 \diamond Just two conifold singularities at $u=\pm 1$.

u=5, vary ϵ



$$\diamond \quad \det(R+\omega) \sim \frac{1}{|\epsilon|^1 (\log|\epsilon|)^3} \text{ if } 1/\epsilon \gg u \gg 1$$

CONTENTS

- ✓ 1. On the Landscape & the Swampland
- ✓ 2. Flux Compactification
- √ 3. Statistics of Vacua
- ⇒ 4. Monodromy and Vacuum Density
- 5. Summary & Comments

4. Monodromy and Vacuum Density

Singularity in Moduli

- Related to the singularity in CY
- Example: Conifold Singularity

$$x^2 + y^2 + z^2 + w^2 = \epsilon$$

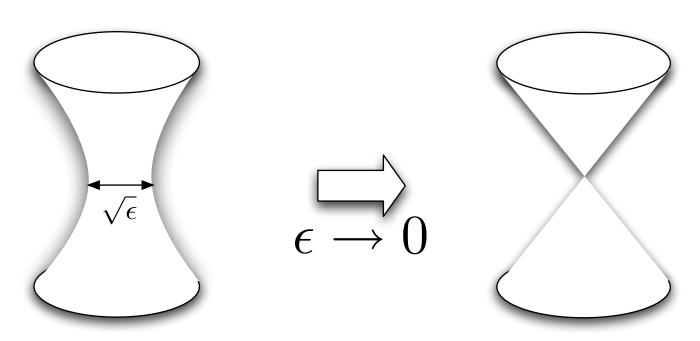
where $x,y,z,w\in\mathbb{C}$

 \diamond Easier Example: A_1 Singularity

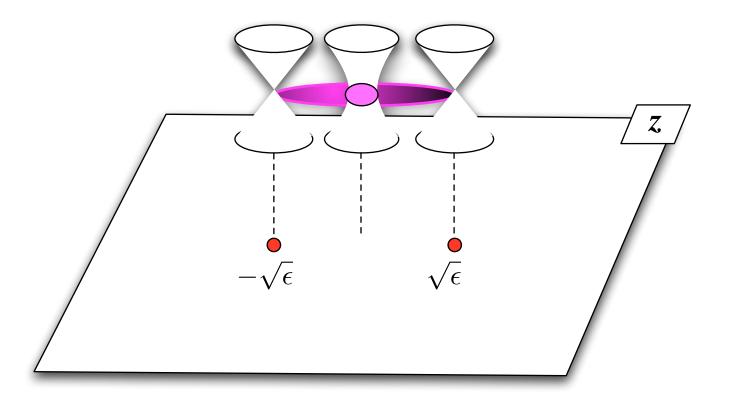
$$x^2 + y^2 + z^2 = \epsilon$$

Much easier example:

$$x^2+y^2=\epsilon$$
 Suppose $\epsilon\in\mathbb{R}_{>0}\Rightarrow\left\{\begin{array}{ll}\operatorname{Re} x^2+\operatorname{Re} y^2=\epsilon\Rightarrow&\text{Circle;}\\\operatorname{Re} x^2-\operatorname{Im} y^2=\epsilon\Rightarrow&\text{Hyperbola}\end{array}\right.$

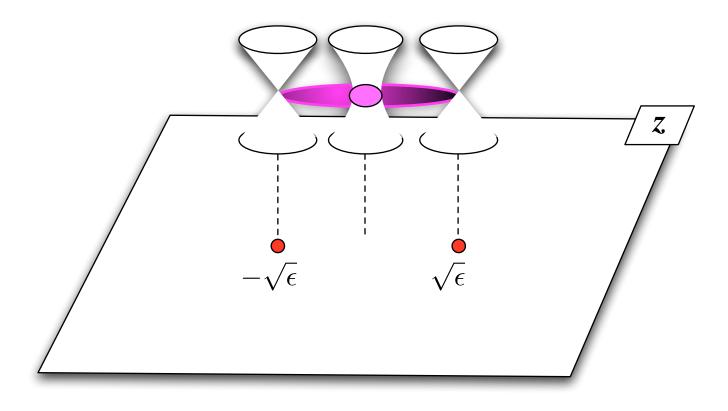


$$x^2 + y^2 + z^2 = \epsilon \longrightarrow x^2 + y^2 = \epsilon - z^2$$



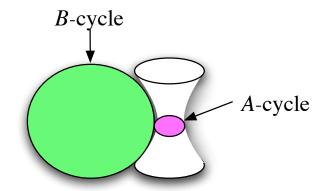
 S^2 of size $\sqrt{\epsilon}$

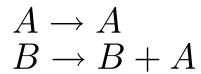
$$x^2 + y^2 + z^2 + w^2 = \epsilon \longrightarrow x^2 + y^2 + w^2 = \epsilon - z^2$$

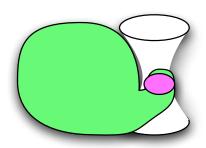


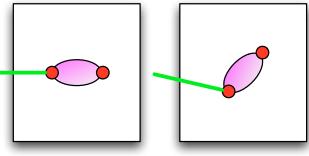
 S^3 of size $\sqrt{\epsilon}$

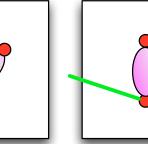
Monodromy

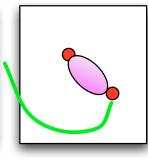


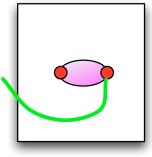












$$\epsilon = 1$$

$$\epsilon = i$$

$$\epsilon = -1$$

$$\epsilon = i$$
 $\epsilon = -1$ $\epsilon = -i$ $\epsilon = 1$

$$\epsilon = 1$$

$$z=\int_A\Omega, \hspace{1cm} A o A; \ F_z=\int_B\Omega, \hspace{1cm} B o A+B.$$

 $F_z \rightarrow z + F_z$.

 $z \rightarrow z$,

As
$$z \sim \epsilon + O(\epsilon^2)$$
,

$$z\sim\epsilon, \ F_z\simrac{\epsilon}{2\pi i}\log\epsilon.$$

Special Kähler geometry

 \diamond Existence of special coordinates X_0, \dots, X_n and the prepotential F(X) so that

$$e^{-K} = ar{X}_I F_I - ar{F}_I X_I, \quad ext{ where } \quad F_I = rac{\partial F}{\partial X_I}.$$

For the complex structure moduli of Calabi-Yau,

$$X_I = \int_{A_I} \Omega, \quad F_i = \int_{B_I} \Omega.$$

where $A_I \cdot A_J = B_I \cdot B_J = 0$, $A_I \cdot B_J = \delta_{IJ}$

 \diamond Parameters are $z_i=X_i/X_0$, ($i=1,2,\ldots,n$).

Vacuum counting in Calabi-Yau moduli

- Singularity in CY
- ⇒ Singularity in the moduli
- \Rightarrow monodromy in X and F
- \Rightarrow the divergent behavior of X and F from holomorphy

$$\Rightarrow e^{-K} = \bar{X}_I F_I - \bar{F}_I X_I$$

$$\Rightarrow g_{i\bar{\jmath}} = \partial_i \bar{\partial}_{\bar{\jmath}} K$$

⇒ Curvature.

 \diamond For Kähler manifolds with $g_{iar{\jmath}}=\partial_iar{\partial}_{ar{\jmath}}K$,

For Special Kähler manifolds, Strominger's formula states

$$R_{{\color{blue} i}{\color{blue} ar{\jmath}} k ar{l}} = -e^{2K} F_{{\color{blue} i} k m} \, ar{F}_{{\color{blue} ar{\jmath}} ar{l} ar{n}} \, g^{ar{n} m} + g_{{\color{blue} i} ar{\jmath}} g_{{\color{blue} k} ar{l}} + g_{{\color{blue} i} ar{l}} g_{{\color{blue} k} ar{\jmath}}$$

where

$$F_{ijk} = X_I \partial_i \partial_j \partial_k F_I - F_I \partial_i \partial_j \partial_k X_I$$

Comments

- Special K\u00e4hler geometry emerged independently from :
 - ullet study of the $\operatorname{\sf 2d} {\mathcal N} = (2,2)$ supersymmetric CFT
 - study of $4d \mathcal{N} = 2$ supergravity
 - study of singularities in complex manifolds
- String theory provides the reason of this 'coincidence'.
- Special K\u00e4hler gemetry was crucial to
 - Mirror symmetry
 - ullet Seiberg and Witten's solution of ${\cal N}=2$ super Yang-Mills

Conifold Singularity

 \diamond As ϵ goes round 0, $X_1 \to X_1$ and $F_1 \to F_1 + X_1 \Rightarrow$

$$X_1 \sim \epsilon$$
 and $F_1 \sim rac{\epsilon}{2\pi i} \log \epsilon$

$$\Rightarrow K = \bar{\epsilon}\epsilon \log |\epsilon| \qquad \Rightarrow g_{\epsilon\bar{\epsilon}} = \partial \bar{\partial} K = \log |\epsilon|$$

$$\Rightarrow R_{\epsilon\bar{\epsilon}} = \partial_{\epsilon} g^{\bar{\cdot}\cdot} \bar{\partial}_{\bar{\epsilon}} g_{\bar{\cdot}\cdot} = \frac{1}{|\epsilon|^2 (\log|\epsilon|)^2} \qquad \Rightarrow \int_{\epsilon \sim 0} \frac{d\epsilon d\bar{\epsilon}}{|\epsilon^2| (\log|\epsilon|)^2} < \infty$$

- \diamond Density $\det(R+g)$ strongly peaked near $\epsilon \sim 0$,
- Integral is finite.

What about other singularities?

- Many other kinds of singularity in Calabi-Yau :
 - Geometric Engineering
 - Argyres-Douglas

etc.

- Is the enhancement always finite?
 - If it's infinite \Rightarrow we might claim the vacuum will be always there.

Our result:

It's always finite for any co-dimension one singularities.

- \diamond Codimension d singularity
- \leftarrow Need to tune d complex parameters to get to the singularity

Sketch of the derivation

- Possible Monodromy : constrained by a mathematical theorem
- $\Rightarrow X$ and $F \Rightarrow$ Kähler form \Rightarrow Metric \Rightarrow Curvature
- Need upper bounds for each term in curvature
 - upper bound for $g_{i\bar{\jmath}} \leftarrow$ Easy
 - upper bound for $g^{\bar{\jmath}i} \leftarrow$ lower bound for $g_{i\bar{\jmath}}$
 - Polarization of the mixed Hodge structure of the singularity

A bit more detail

- $\diamond \quad (X_i,F_i) o M(X_i,F_i) ext{ for } \epsilon o e^{2\pi i} \epsilon$
 - Eigenvalues of M = roots of unity,
 - size of Jordan block < 4
- \diamond Take k s.t. eigenvalues of M^k = 1, and change the parameter $a=\epsilon^k$.
- $\diamond \quad N = M^k 1$ satisfies $N^4 = 0 \quad \Rightarrow$

$$egin{split} egin{split} eg$$

- \diamond Take p s.t. $N^p(X_{i(0)},F_{i(0)})^T
 eq 0$ but $N^{p+1}(X_{i(0)},F_{i(0)})^T = 0$.
- $\Rightarrow (X_i, F_i) \lesssim (\log a)^p$
- \diamond many $e^{-K}=ar{X}_iF_i-ar{F}_iX_i$ in the denominator in the expansion
- \Rightarrow Needs lower bound for $ar{X}_iF_i-ar{F}_iX_i$
- Leading behavior

$$\bar{X}_i F_i - \bar{F}_i X_i \sim (\bar{X}_{i(0)} N^p F_{i(0)} - \bar{F}_{i(0)} N^p X_{i(0)}) (\log a)^p + \cdots$$

 \diamond A deep mathematical fact ensures $(ar{X}_i N^p F_i - ar{F}_i N^p X_i)_{(0)}
eq 0$

$$\Rightarrow e^K = (\bar{X}_i F_i - \bar{F}_i X_i)^{-1} \lesssim (\log a)^{-p}$$

⇒ · · · ⇒ Integral converges!

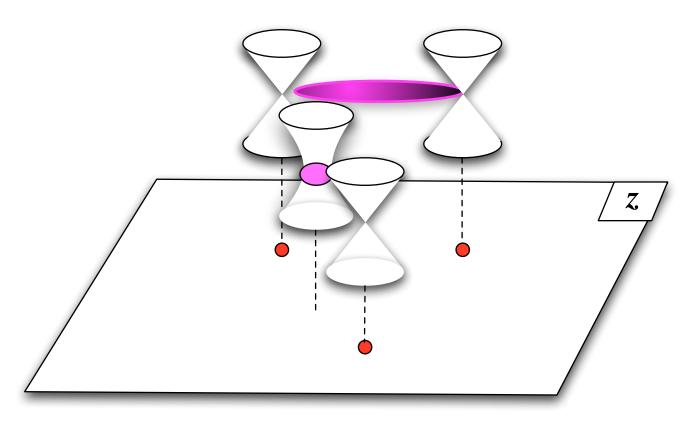
Explicitly studied two cases:

- Argyres-Douglas singularity
- Electron and Monopole become simultaneously massless

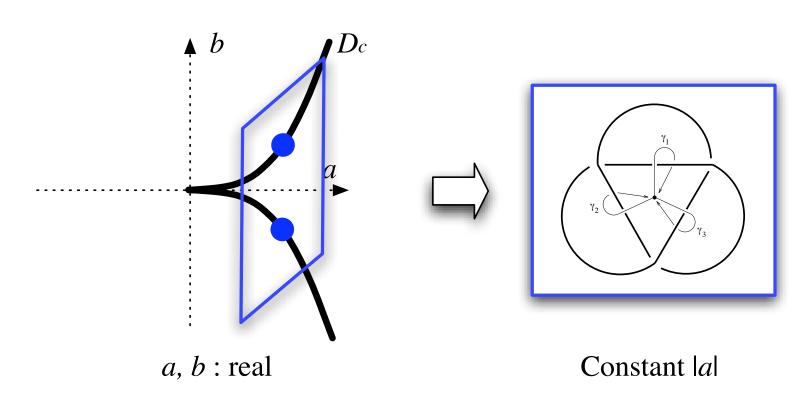
- Geometric-Engineering singularity
- Yang-Mills theory decouples from gravity

Argyres-Douglas singularity

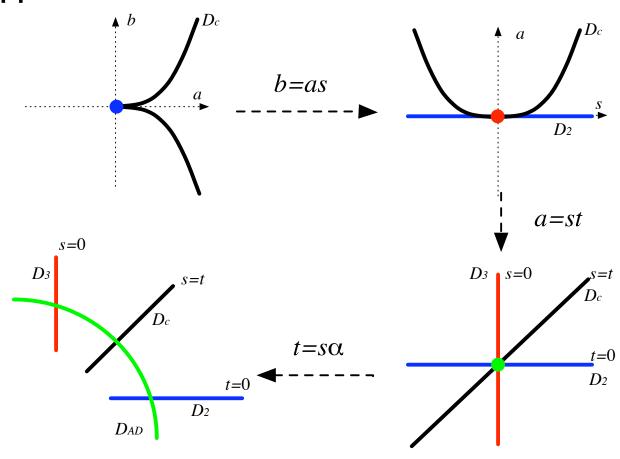
 \diamond Local form $x^2+y^2+w^2=z^3-3az-2b$ with moduli $oldsymbol{a}$, $oldsymbol{b}$



- \diamond Roots of $z^3 3az 2b = 0$ determines the singularity
 - Conifold singularity \leftarrow Double root $a^2 = b^3$
 - Argyres-Douglas singularity \leftarrow Triple root a=b=0



 \diamond What happens near $a \sim b \sim 0$?



Nothing in particular!

CONTENTS

- √ 1. On the Landscape & the Swampland
- ✓ 2. Flux Compactification
- √ 3. Statistics of Vacua
- √ 4. Monodromy and Vacuum Density
- ⇒ 5. Summary & Comments

5. Summary & Comments

- ✓ Landscape & Swampland problem in string theory.
- √ Moduli fixing.
- √ Statistics of Vacua.
- √ Conifold Singularities favored, but not infinitely.
- Extension to other kinds of singularities.