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1. String Theory Landscape & Swampland |

¢ Quantization of gravity
e because it’s challenging
e Dbecause it will be needed soon
<= speciral index of primordial fluctuation

& Candidates (generally covariant + quantum mechanical):
e String (or M) theory
e Loop Quantum Gravity ... Pure metric theory.

2/68



String / M theory

& Not originally meant to quantize gravity
o Worldlines = Worldsheets
o Consistency = 10D + graviton

& Many higher-dim’l solitons, branes, which support gauge fields
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Compactification

o 10D = 4D Minkowski + very small 6D space
¢ Many consistency conditions.

o Semi-realistic models:
e Supersymmetrized Standard Models +
e Hidden sector for dynamically breaking SUSY
e AXxion, efc..

which is a triumph for string theory.

o Presence of Moduli.
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Status

¢ No experimental tests.

& Rich as a theoretical model
e natural setting for various FT phenomena
(ADHM, Seiberg-Witten, Montonen-Olive duality etc.)
e natural setting for various higher-dim’l SUGRA
e microscopic account of enfropy of BPS black holes
e predicted many nonirivial mathematical results

¢ Unified most of the research on QFT & SUGRA practitioners
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Moduli Fields

o Neutral, light field with only Planck-suppressed interaction
& How light ? = massless or SUSY br. or Hubble
¢ Corresponding to the ‘moduli’ of the compactification manifold

o moduli (pl.) modulus (singl.) :
parameter(s) in the pure math jargon.

o VEV of moduli field determines
the shape & size of the internal manifold.

¢ Shape & size determines the Yukawa/gauge couplings.
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Moduli Problem

o Massless scalar = 5th force

¢ Susy breaking will make them massive ~ M,
e Overproduced in preheating
e decay after BBN

etc.

o Needto make it much heavier !
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Moduli Fixing in String theory

& Vexing problems for a long time
«~ Consistency forbids introduction of potentials by hand

o Flux compactification + D-brane Instanfon Correction saved the
day.

& Roughly speaking,

o Flux inside internal mfd. = Tend to spread
e D-brane wrapping inside internal mfd. = Tend to shrink

= Shape & Size fixed.
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o # of choices of flux are HUGE 1l
e Holes in Calabi-Yau: 100 ~ 200
e Flux per hole is integral,
e Wwith upper bound ~ 100

= 100100 of choices

¢ Flux given = Moduli fixed
— Shape & size fixed = Yukawa & gauge coupling

o Huge # of densely-distributed realizable couplings.

¢ Huge landscape of 4d vacua.
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Really?

o Opinion varies:

Yet-to-unknown consistency condition = unique solution ?

Let’s analyze models at hand statistically !

o~=0=>0

Any 4d Lagrangian can be UV-completed with gravity !
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Swampland (Vafa)

Q. Which 4d Lagrangian is OK ?

& we’d like to argue without the long detour into
10d string, Calabi-Yau, fluxes and all that messy stuffs.

¢ Anomaly cancellation.
— Certain gauge groups & matter contents are not allowed.

& Upperbound on the rank of gauge groups

& Gravity should be weaker than gauge coupling
(Arkani-Hamed-Motl-Nicolis-Vafa, hep-th/0601001)

o Positivity of certain dimension > 4 operators <= Causality.
(Adams-Arkani-Hamed-Dubovsky-Nicolis-Rattazzi , hep-th/0602178)
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2. Flux Compactification |

d = 4, N' = 1 Supergravity

o {Qa QB} — ’Y'ggpu
o (guvs¥u)
o (AlAq)

o (Ph, ")
¢ P, gauged = Q, gauged

o @' are complex scalars, G5 and V restricted in

/ d*z+/g (Gz-]—(qb, $)0ud' 0ud’ + V (¢, a_ﬁ))
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o K(¢,¢): Kahler potential, W (¢): superpotential =
G’ij(¢a QE) — 8i5.7K(¢9 Q_ﬁ),

V(¢,$) = e (GID;W (¢) D;W (6) — 3|W (9)|?)
D;W () = (8; + (9 K))W

¢ Kahler tfransformation:

K(¢,¢) — K(¢,0) + f(¢) + f(9)
W (¢) — e—f(¢)W(q5)

D;W (¢) — e T D,W (¢)

leaves G;; and V (¢, ¢) invariant.
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10d lIB supergravity

€_¢, C! g,Ll,I/!
NSNS _ NSNS RR _
Hiwp) = OwuBup) > Hiup) = Ol va]

Fluvpor] = 01,Cy por) With constraint Fy ., 01 = €0 p0ra8vyse FlaByoel

+fermions

An important coupling: / Clg) A Hg,s)Ns F?F)
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Branes

o point-like objects couple to A, via / dzt A,
worldline

¢ objects extended in p-direction couple to (p + 1)-form fields via

dml‘l’o e o o dml’l’pc .
./worldvolume [0+ pp]
C < D(-1) brane = D-instanton

BNSNS F1 brane = siring

BRR = D1 brane = D-string
Cy) <= D3 brane

O / CyyNH gs)Ns N H F?S — HNSNS A iRR has D3-brane charge
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Calabi-Yau compactification

o 10=4+6

¢ 6-dimensional CY = the holonomy SU (3) C SO(6)

— CY : complex mfd 331, :132, 333, w4, :135, 0 — zl, 22, z3, 21, 22, z3,

with Kahler form ), everywhere nonzero (3, 0) form

o 6dspinor4 =3 @ 1 under SU(3)
= 1/4 of SUSY remain = TypelIB/CY: N =2

o No gauge fields = put D-branes = breaks SUSYto N/ = 1
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Moduli in CY compactification

o CYs come in various fopological types:
e hy 1 fwo-cycles, hj ; four-cycles
O 2h1,2 + 2 three-cycles: Ag, A1, .., Ah12 and By, B4, ..., Bh12
SthGfAi B.7 = (570 and Az 44.7 = Bi B‘7 =0

¢ CYscanbe confinuously deformed , parametrized by
o p;, = / w A w : sizes of four-cyclesfor: = 1,...,hq11
C;

o =z, = / () : periods of three-cyclesfor: = 1,...,hy2
A

(]
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o The metric of CY variesas p; and z;:  grmn(p;, 2;)
—> 10d metric :

ds? = nupdxtde” + gmn(ps(xh), z;(xH))dz™ dz™
o Plug thisinto S = / dx' | /g10)R(10)=
S = /d.’])4‘ /9(4)R(4)—|—
+ / dz* | /g(2)9(4GizOur'Ouvp’ + / dz*\ /9(3)9(y) Gl0n="0v =

o pi combines with / c to become a complex scalar
C;

i _ (4)
P complexified — v / wAw+ / C
C; &
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¢ hi1 + h1o Massless complex scalars in total
e p,;: called size moduli or Kahler moduli

e z;: called shape modulior complex structure moduli

o Axio-dilaton 7 — ie ? -+ C(O) is also a modulus.
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Superpotentials for Moduli

o Just compactifyingonCYleadsto W — 0 = V = 0.
& Masses to all moduli

— We need W depending all variables r, p;, z;.

e Fluxes give W for r and z;’s
e Instanfon corrections give W for p’s
(Kachru-Kallosh-Linde-Trivedi hep-th/0301240)

¢ Let’s see each in detail.
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Flux superpotential

o Type IIB has 2-form potentials Bygys and Bgg
with 3-form field strengths Hygns and Hgg

o Quantized fluxes through three-cycles

& They give rise to

W = QA (Hgg + THysns)
CcYy
hi2 T
= / Q/ (HRR + 7Hpsns) —/ Q/ (HRR+THNSNS)]
i—o YA /B B; JA;
hi2
oOF
— zi(NER + TNZ.NSNS) — 8—2(MzRR + TMiNSNS)]
i—0 g
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Comments

hi2
oF
w=> [zi(NzRR + TINJONS) — 7(M§R + T MM
1=0 v

o This depends on sfring coupling and shape, not on the size .
& N; and M; are the number of fluxes, hence integers

o Linear in Fluxes.
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& This form for W : obtainable by a standard KK reduction;

& or, from the domain-wall tension (Gukov):

e Wrap (p, q) 5-brane on A;:
= a BPS domain wall in 4d point of view.
= The tension should be ‘W|OO — W|_oo‘ from 4d SUGRA.
(p + 79) / Q
A;

e The tension is , from the (p, q)-brane action.

e p unifs of Hrg and q units of Hygns through B,.

= W

24/68



Constraint on NV; and M,

o Aterm /0(4) A Hysns A Hgp in type 1B sugra.
o Of course there is a coupling /D3 c.

& Another coupling — /03 %) to Orientifold planes.
— EOM for CY) leads

#03 = #pD3 + /HRR N HysNs

hi2
RR » rNSNS RR n/NSNS
= #ps+ ) |NFRMNNS — AR ]
i=0

o Fo3 is fixed by the geometry of CY.
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Instanton corrections

o Superpotentials for the size moduli p* : How?

o Wrdpping N D7-branes on a 4-cycle C;

— N = 1 U(N) gauge theories with coupling constant pi

— Superpotential ~ e~ **
associated with gaugino condensation.
o D3-brane instanfons wrapping C;.

— Contributes o< e "' to the superpotential
If the # of the fermionic zero-modes is appropriate.
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< d CYs with sufficiently generic instanton corrections (Denef-Douglas).
4
Closed string moduli are FIXED !

o Caveats:
e Their discussion was based on (Witten): in which Hpp = Hpgns = 0.
e No definite treatment yet on D-brane instantons with nonzero H.

e Correctionto K (p, p) might have bigger effects. (Conlon-Quevedo)
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¢ Further caveats:

e Fluxes + Instantons make 4d supersymmetric AdS solutions.

e Some other mechanism necessary to make de Sitter vacua.

e Wwhich is unfortunately less controllable.
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3. Statistics of Vacua: Theory |

o We used ﬂuxes HRR and HNSNS'
¢ In atypical CY, there’re 100~-200 3-cycles to put fluxes;

& LHS of the tadpole constraint

#03 = #pD3 + /HRR N HpsNs
is of order 1000~5000.

& SUSY requires # p3 > 0 and the quadratic form positive definite
= 1/4000 ~ 100 choices for each three-cycle

10199 ~ 10299 choices of fluxes!
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o Gauge group & matter contents : <= fopology of the CY

e Form of the low energy lagrangian.
& Coupling constants <= the moduli <= Flux
o Coefficients of the low energy lagrangian

& Once you construct the SM (+ susy + inflatons etc.),
there’ll be plethora of vacua with slightly differing Yukawas!
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¢ Need the distribution of Yukawas / Cosmological constants
& which are determined by the moduli

—- We need the disfributfion of the moduli !

¢ Fixed moduli depends on the flux ...

= Need the distribution of Hpgp and Hgps-
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We don’t know yet.

o Fluxes change when we cross domain walls.

—> Flux distribution is tied to the dynamics of domain walls
in the extremely early universe before inflation!

o So we can’t study realistic distribution of flux. Period.
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As a zeroth approximation,

o We try a gaussian ensemble of the fluxes Hgg and Hygps:
N; = /A (Hgr + 7Hpsns)» M; = /B (HRR + 7HpsNs)-

¢ Under a large fluctuation, we have monodromies acting on (IV;, M;):

N; A B\ [ N;
—
M; c D) \M;
which respects the pairing (IV;, M;) - (N;', M;’) = E (N; M;" — N;' M)

(/

o Assume the ensemble to be monodromy invariant.
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OF

¢ Distribution of W (z) = N;z; — Mia =

Z

(W ()W (w)") o< 3 [zi (55) — (gfﬂ

— K(z,w™*)
9

(W (2)W (w))

0
(W(z)"W (w)*) =0
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o (W(2)W(w)*) x e E(#%) s very natural,
because it transforms covariantly under the Kdhler transform:

K(z,2*) — K+ f(2) + f*(z%), W(z) — e TEW(z)

& We can study the behavior of N = 1
supergravity system with random superpotential

with (W (2)W (w)*) o e K (z:w"),

& Huge literature on systems with random potential (not superpotential)
iIn condensed matter physics. We should utilize them...
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Distribution of Vacua

o Supersymmetric Vacua are defined by ;W = 0.
— Expected number of vacua at z; is given by

p(z,2) = (8(D;W (2))6(D:W

(2)") | det (az-DjW B,L-Djw*>|>

&.D;W  8;D;W*

o Determinant needed to count each vacua with weight 1.
& Absolute value makes evaluation harder; instead consider

8;D;W az-D]—W*)>

Bz 2) = (B(DIW ()SDW () det (I 5D

o This counts vacua with signs -

-1.
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& p can be calculated using Wick’s theorem.

o Theresultis,

. ) 1 . .
p(z) H dz' A dz' « det %(sz + 6" jw)
)

where
. . _ i . _
R'; = Rzikl—dzk A dzt, W = Egijdzz A dzd

is the curvature and the Kdhler form of the moduli space .
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A mathematical comment

o Let M compact n dim’l Kahler and nonsinguiar,

¢ FE an dim’l vector bundle on M.
= A generic section of E have / e(FE) zeros,
M

when counted with signs, where e(F) is the Euler class.

¢ e(F) = det R via the Chern-Weil homomorphism.
o D;Wisasectionof TM Q& H—=

/ det RpproH = / det(Rrpr + Ry) = / det(Rppr + w)
M M M

¢ In supergravity M is noncompact and singular !
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Physical Comments

¢ Suppose there’re No curvafure: R = 0. = p « det w
— the vacua distribute uniformly following the volume.

& Vacua tends to cluster around where the curvature R is large.
¢ Recall we're discussing the curvature of the moduli space.
& Curvature of the moduli is large <= the curvature of the CY is large.

— Strongly curved extra dimension is favored .
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Examples

& To visudlize p,
o We need to calculate g;; and R’ :

9i7 = 0;0;K, R’ ;7= 01gimorg™

— Consult the mirror symmmetry literature,
—> Plug intfo the formula for p,
— Now you have a distribution of vacua !
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Near Conifold Singularity(Denef-Douglas, Giryavets-Kachru-Tripathy)

¢ Wwhere a 3-cycle collapses. Call it A;.
o Letgp = X1 = F1 ~ ¢log ¢:

1
R % ~
PP" 1|2 (log |p])2

-1/(x log (X2)) e—
-X 10g(X"2) m—

9o ~ log(|d|?), > gopg

600
o
X
S
24
X

400

200 ~ \

0
0 0.002 0.004 0.006 0.008
X
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Two param. example (Eguchi-Y.T., unpublished)

o Took two-modulus CY: degree 8 hypersurface in WCPT | , , , Wit

1 1 1 1 1 1

8 8 4 4 4 4
—x] + —x5 + —x2a + —x; + —xr — Yor1Tror3zTa4Ty — —Ys(T1X =0
8 1 8 2 8 3 8 4 8 5 QL] L2L3L4L5 | s(: 1 fZ)

o geomefric engineering limit where the pure SU (2) SYM decou-
ples from supergravity.
o Denote e = 1/(215) and u = 1 + 3. When e — 0,

el/2 . Dynamical Scale of SYM measured in Planck units;
u : Seiberg-Witten’s w.
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e = 0.001, u : finite

100 -~

MBI O =MW s W!

¢ Just two conifold singularities at u = +1.
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u = 95, Vvary e

100

10

0.1

-0.001

o det(R+ w) ~

ifl/e>u>1

€| (log |€[)?
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4. Monodromy and Vacuum Density I

Singularity in Moduli

& Related to the singularity in CY

o Example: Conifold Singularity

ety +22tuwi=e
where x,y, z, w € C

o Easier Example: A4 Singularity

a:2—|—y2—|—z2:e
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¢ Much easier example:
22 + yz —

Re 2 + Re y2
Rez? — Im y2

\ /
X

>

Ve

€E — Circle;
e = Hyperbola

Suppose € € R~ g = {

e — 0
— —

48/68



a:2—|—y2—|—z2=e—>:132—|—y2=e—z2

S? of size /e
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S3 of size /e
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Monodromy A— A

B-circle

@ o @

= R S e

e =1 € =1 e = —1 € = —1 e =1
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z=/ﬂ, A — A;
A
FZ:/Q, B_>A_|_B.
B
J
z — z,
F, — z+ F,.
As z ~ € + O(€?),
zZ ~ €,

€
F, ~ —1loge.
271
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Special Kahler geometry

& Existence of special coordinates Xy, -+ , Xy,
and the prepotential F(X) so that
K — X;F; — F;X where F OF
e — — = —,
Iy IXT, I=3 X;

o For the complex structure moduli of Calabi-Yau,

XI:/ Q F=/ Q.
Ag By

whereAI-AJ:BI-BJ:O,AI-BJ:6U

¢ Parametersare z; = X;/ X, 2 = 1,2,...,n).
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Vacuum counting in Calabi-Yau moduli

¢ Singularity in CY

= Singularity in the moduli

= monodromy in X and F

— the divergent behavior of X and F' from holomorphy
— Ef__lg-:::_jilzl?[ — I?[;X:[

— 9i57 = 8i55K

— Curvature.
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o For Kahler manifolds with g;; = 9;0;K,

Rijkl_ — gimakgmngignj

o For Special Kahler manifolds, Sfrominger’s formula states

o 2K o nm P I
Rijk:l = —e"" Fyp, F]—lﬁ g + 979,71 T+ 9,19k
where

Fijk = XIBZ-BjakFI — FIaiajakXI
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Comments

o Special Kdhler geometry emerged independently from :
e study of the 2d N = (2, 2) supersymmetric CFT
e study of 4d N = 2 supergravity
e study of singularifies in complex manifolds

<& String theory provides the reason of this ‘coincidence’.

o Special Kahler gemetry was crucial to
e Mirror symmetry
e Seiberg and Witten’s solution of A/ = 2 super Yang-Mills
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Conifold Singularity

o Asegoesround 0, X1 — Xjand F} — F| + X1 =

€
X1 ~e€ and Fi ~ —loge
271

= K = €elog |€] = gee = 00K = log |€]

— oo — - — w
e = 0cg” Degi = s e~ |2 (log [¢])?

¢ Density det(R + g) strongly peaked near e ~ 0,
<& Integral is finite.
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What about other singularities ?

<& Many other kinds of singularity in Calabi-Yau :
e Geometric Engineering
e Argyres-Douglas

etfc.

& Is the enhancement always finite ?
o Ifif’s infinite = we might claim the vacuum will be always there.
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Our result:

It’s always finite for any co-dimension one singularities.

& Codimension d singularity
< Need to tune d complex parameters to get to the singularity
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Sketch of the derivation

& Possible Monodromy : constrained by a mathematical theorem
— X and F' =- Kahler form = Meiric = Curvature
¢ Need upper bounds for each term in curvature

e upper bound for g;; <= Easy

e upper bound for g7* < lower bound for g;;
« Polarization of the mixed Hodge structure of the singularity
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A bit more deftail

& (Xi7 Fz) — M(Xz', Fz) fore — 627”:6
e Eigenvalues of M = roots of unity,
e size of Jordan block < 4

& Take k s.t. eigenvalues of M k=1, and change the parameter a = ex.

o N = M¥* — 1satisfies N* =0 =
@S) _ ot loga (( z(O)) ( z(l)) ( z<z>) L )
1 z(O) z(l) z(2)
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o Take p s.t. NP(X; ), Fy0))" # 0but NPTL(X; gy, F;0))" =0.
= (X, F;) < (loga)?

o many e B = X,F;, — F,X; in the denominator in the expansion
— Needs lower bound for X; F; — F; X;

& Leading behavior

XiFi — FzXz ~ (XZ(O)NPFZ(O) — Fi(O)NpXi(O))(log a)p 4+ e
o A deep mathematical fact ensures (X; NPF; — F;NPX;) ) # 0
K_(v.r _fx.)"1l< —p
= K = (X;F;, — F;X;)™ 5 (log a)

= ... = Integral converges !
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o Explicitly studied two cases:

e Argyres-Douglas singularity
< Electron and Monopole become simultaneously massless

o Geometric-Engineering singularity
< Yang-Mills theory decouples from gravity
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Argyres-Douglas singularity

o Local form z? + y? + w? = 2° — 3az — 2b with moduli a, b
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o Roots of 2% — 3az — 2b = 0 determines the singularity
e Conifold singularity< Double root a? = b3
e Argyres-Douglas singularity <= Tripleroota = b =0

De

éb

a, b : real Constant lal
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< What happensheara ~ b ~ 0?

AD

s=0

i

/

s=t

Dap

<& Nothing in particular !

D>

b=as
------ >
i
| a=st
v
D3 ¢ 5=0 =t
Dc
f=sa t=0
4------ D2
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5. Summary & Comments |

v" Landscape & Swampland problem in string theory.
v~ Moduli fixing.

v’ Statistics of Vacua.

v Conifold Singularities favored, but not infinitely.

v Extension to other kinds of singularities.
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