Triangle Anomaly from Einstein Manifolds

Yuji Tachikawa (Univ. of Tokyo, Hongo)

based on hep-th/0512nnn by S. Benvenuti, L. Pando Zayas and YT

December, 2005 @ Princeton

1. Introduction & Summary

AdS/CFT correspondence

Consider large # of D3 branes put on the tip of the CY cone Y

$$ds_Y^2 = dr^2 + r^2 ds_X^2$$

- ullet X_5 is a 5d base called Sasaki-Einstein.
- d=4, $\mathcal{N}=1$
- \diamond Field theory on the D3 \Rightarrow Some quiver gauge theory
- \diamond Near Horizon Limit of the D3 \Rightarrow $\mathrm{AdS}_5 imes X_5$

Both should describe the same physics

Examples

- \diamond Many explicit metrics for X_5 : S^5 , $T^{1,1}$, $Y^{p,q}$ and $L^{p,q,r}$
 - (Gauntlett et al.)

- \Rightarrow Central charge a = (volume) $^{-1}$
- Quiver theories known through tiling etc.(Hanany et al.)
- \Rightarrow Central charge a from a-maximization (Intriligator-Wecht)

They agree and are, in general, irrational.

Generalization

- Toric Sasaki-Einsteins
- \Rightarrow Z-minimization (Martelli-Sparks-Yau) gives the volume
- Corresponding quivers
- ⇒ #(chiral superfields) and # (gauge groups) known
- $\Rightarrow a$ -maximization

They agree (Butti-Zaffaroni)!

Recall

the correspondence of CS terms with Triangle Anomalies

$$\begin{array}{cccc} \text{AdS} & \text{CFT} \\ & \phi & \mathcal{O} \\ Z[\phi(x)|_{x_5=\infty} = \hat{\phi}(x)] & = & \langle e^{-\int \hat{\phi}(x)\mathcal{O}(x)d^4x} \rangle \\ & A_{\mu}^I & \leftrightarrow & J_I^{\mu}: \text{current for } Q_I \\ & & & & & & & & \\ Z[A_{\mu}^I(x)|_{x_5=\infty} = \hat{A}_{\mu}^I(x)] & & & & & & & & & \\ \end{array}$$

$$S_{CS} = \int rac{1}{24\pi^2} rac{c_{m{IJK}} A^{m{I}} \wedge F^{m{J}} \wedge F^{m{K}}}{\Downarrow}$$

Gauge dependence

$$egin{aligned} \delta_{\pmb{\chi}} \langle e^{-\int A_{\mu}^{\pmb{I}} J_{\pmb{I}}^{\mu}}
angle_{SCFT} &= \int_{AdS_5} rac{1}{24\pi^2} c_{\pmb{I}\pmb{J}\pmb{K}} \, \pmb{\delta_{\pmb{\chi}}}(\pmb{A^{\pmb{I}}}) \wedge \pmb{F^{\pmb{J}}} \wedge \pmb{F^{\pmb{K}}} \ &= \int_{M^4} rac{1}{24\pi^2} c_{\pmb{I}\pmb{J}\pmb{K}} \, \pmb{\chi^{\pmb{I}}} \pmb{F^{\pmb{J}}} \wedge \pmb{F^{\pmb{K}}} \end{aligned}$$

$$c_{IJK}=\operatorname{tr} Q_IQ_JQ_K.$$

Our goal today

Calculate both sides and check that they match!

 \diamond CS terms from Kaluza-Klein reduction on X

$$\Rightarrow c_{IJK} = rac{N^2}{2} \int_X \omega_{\{I} \wedge \iota_{k_J} \omega_{K\}}$$
 (general) $\Rightarrow c_{IJK} = rac{N^2}{2} |\det(k_I, k_J, k_K)|$ (toric)

Triangle anomaly from the structure of the quiver

$$\Rightarrow$$
 $\operatorname{tr} Q_I Q_J Q_K = rac{N^2}{2} |\det(k_I, k_J, k_K)|$

- \diamond c_{IJK} independent of $k_{L
 eq I,J,K}$?
- ⇒ Higgsing through Dibaryon condensation.
- Intricate mixing of angular momenta and baryonic charges

CONTENTS

- ✓ 1. Introduction & Summary
- \Rightarrow 2. KK reduction
- 3. Dibaryons and Giant Gravitons
- 4. Evaluation for the toric SE
- 5. Matching to quivers
- 6. Comments & Outloook

2. KK reduction

cf. M on CY_3

 \diamond M theory on Calabi-Yau threefold X

$$C = \underbrace{A^I}_{M^5} \wedge \underbrace{\omega_I}_{CY}$$

- \diamond $b^2 = \dim H^2(X)$ of gauge fields
- $\diamond \int_{M^{11}} C \wedge dC \wedge dC \Rightarrow$

$$c_{IJK}\int_{M^5}A^I\wedge F^J\wedge F^K \qquad ext{where} \qquad c_{IJK}=\int_{CY}\omega_I\wedge\omega_J\wedge\omega_K$$

IIB on X_5

 \diamond Type IIB on Einstein mfd X

$$\diamond \quad X \curvearrowleft U(1)^{\ell} \text{ with } b^3 = \dim H^3(X)$$

- \diamond Expected: ℓ gauge fields from $g_{\mu\nu}$, b^3 from F_5 .
- \diamond Ansatz ? c_{IJK} ?

Metric

$$egin{align} ds^2_{ ext{AdS}_5} &= \eta_{\mu
u} f^{\mu} f^{
u} \ ds^2_{X^5} &= \sum (e^i)^2 \;\; \Rightarrow \;\;\; \sum (\hat{e}^i)^2 = \sum (e^i + k_a^i A^a)^2 \ \end{pmatrix}$$

N.B. The Hodge star * exchanges

$$f^1, \dots, f^5 \quad \Leftrightarrow \quad \hat{e}^1, \dots, \hat{e}^5$$

Thus

$$*\operatorname{vol}_{AdS_5} = \hat{e}^1 \cdots \hat{e}^5 = \operatorname{vol}_X + A^a \wedge \iota_{k_a} \operatorname{vol}_X + \cdots$$

Five-form

$$F_5 = F_{0,5} + F_{1,4} + F_{2,3} + F_{3,2} + F_{4,1} + F_{5,0}$$
.

where

$$egin{align} F_{0,5} &= rac{2\pi N}{V} \mathrm{vol}_X, & F_{5,0} &= rac{2\pi N}{V} \mathrm{vol}_{\mathrm{AdS}}, \ F_{1,4} &= rac{2\pi N}{V} A^a \wedge \iota_{k_a} \mathrm{vol}_X, & F_{4,1} &= 0, \ F_{2,3} &= N F^I \wedge \omega_I, & F_{3,2} &= N (*F^I) \wedge *\omega_I. \ \end{pmatrix}$$

which satisfies $F_5=st F_5$ up to first order.

N.B. Other fields =0; assume all internal w.f. are $U(1)^\ell$ inv.

Impose
$$dF_5=0\Rightarrow d_{\mathrm{AdS}}F_{p,q+1}+d_XF_{p+1,q}=0$$
:
$$0=(d_{\mathrm{AdS}}*F^I)\wedge *\omega_I, \\ 0=(d_{\mathrm{AdS}}F^I)\wedge \omega_I+(*F^I)\wedge d_X*\omega_I, \\ 0=2\pi(d_{\mathrm{AdS}}A^a)\wedge \iota_{k_a}\mathrm{vol}_X+VF^I\wedge d_X\omega_I.$$
 \Downarrow

$$dF^I=d*F^I=0$$
 iff $\exists c^a_I$ s.t. $d*\omega_I=0 \ -Vd\omega_I=c^a_I\,2\pi\,\iota_k a ext{vol}_X \ dA^a=c^a_IF^I$

Recap.

$$d*\omega_I=0$$
 $d\omega_I+\iota_{k_I}{
m vol}^\circ=0$ where $k_I=2\pi c_I^ak_a, {
m vol}^\circ={
m vol}/V.$ $\delta F_5=Nd(A^I\wedge\omega_I)$ where $A^a=c_I^aA^I.$

- ω_I closed and co-closed $\Rightarrow b^3$ of them
- ullet ω_I closed-up-to-isom. and co-closed $\Rightarrow \, oldsymbol{d} = oldsymbol{b^3} + oldsymbol{\ell}$ of them

OK, how about c_{IJK} ?

One contribution

$$F_5=*F_5$$
 forces at 2nd order $F_{2,3}=F^I\wedge\omega_I \ F_{3,2}=(*F^I)\wedge(*\omega_I)+A^a\wedge F^I\wedge\iota_{k_a}\omega_I$

$$d_{ ext{AdS}}F_{4,1}+d_{X}F_{3,2}=0$$
 gives $(dst F_{I})\wedge(st\omega_{I})=F^{a}\wedge F^{I}\wedge(\iota_{k_{a}}\omega_{I})$

Result

$$d*F^I \int_X (\omega_K \wedge *\omega_I + \frac{1}{16V^2} k_K k_I \mathrm{vol}) = \frac{1}{3\pi} F^I \wedge F^J \int_X \omega_{\{I} \wedge \iota_{k_J} \omega_{K\}}$$

$$\downarrow \downarrow$$

$$\tau_{IJ} = \frac{N^2}{2\pi} \int_X (\omega_J \wedge *\omega_I + \frac{1}{16V^2} k_J k_I \mathrm{vol})$$

$$c_{IJK} = \frac{N^2}{2} \int_X \omega_{\{I} \wedge \iota_{k_J} \omega_{K\}}$$

$$\mathsf{where} \qquad d\omega_I + \iota_{k_I} \mathrm{vol}^\circ = 0$$

cf. $au_{I,I}$ obtained in (Barnes-Gorbatov-Intriligator-Wright)

CONTENTS

- √ 1. Introduction & Summary
- ✓ 2. KK reduction
- ⇒ 3. Giant Gravitons and Normalization of Charges
 - 4. Evaluation for the toric SE
 - 5. Matching to quivers
 - ♦ 6. Comments & Outloook

3. Giant Gravitons and Normalization of Charges

 A^{I} from:

- $\diamond g_{\mu\nu} \Rightarrow$ KK Angular Momenta : ℓ of them
- \diamond $F_5 \Rightarrow$ Baryonic Charges : b^3 of them

Total: $d = \ell + b^3$ of gauge fields

What's the integral basis?

$$\diamond \quad \delta F_5 = Nd(A^I \wedge \omega_I) \Rightarrow$$
 D3-brane wrapping on C has charge $N\int_C \omega_I$

- \diamond ω_I is not closed ! $d\omega_I + \iota_{k_I} \mathrm{vol}^\circ = 0$
- ⇒ Depends more than just its homology class.
- Consider branes 'at rest' which is charge eigenstate
- \Rightarrow C : invariant under $U(1)^{\ell}$
- \diamond E.g. $S^5 \curvearrowleft SO(6) \supset U(1)^3$
- \Rightarrow Brane wrapping the S^3 at equator : Maximal Giant Gravitons !

 \diamond Define $C \sim C'$ if $C - C' = \partial D$, D: invariant

$$\Rightarrow (\int_C - \int_{C'})\omega_I = \int_{\partial D} \omega_I = \int_D \iota_{k_I} \text{vol} = 0$$

 \diamond Assume there are $d=\ell+b^3$ such three-cycles \Rightarrow Normalize

$$\int_{C^I} \omega_J = \delta^I_J.$$

N.B. As we will see, assumption has been checked for toric SEs.

Robustness of $c_{IJK} \propto \int \omega_{\{I} \wedge \iota_{k_J} \omega_{K\}}.$

 \diamond Shift $\omega_I o \omega_I + d\alpha_I$

$$\Rightarrow \delta c_{IJK} \propto \int dlpha_{\{I} \wedge \iota_{k_J} \omega_{K\}} = \int lpha_{\{I} \wedge \iota_{k_J} \iota_{k_K\}} ext{vol}^\circ = 0$$

 \diamond Shift $\mathrm{vol}^\circ \to \mathrm{vol}^\circ + d \alpha$. $d \omega_I + \iota_{k_I} \mathrm{vol}^\circ = 0 \Rightarrow \omega_I \to \omega_I + \iota_{k_I} \alpha$

$$\Rightarrow \delta c_{IJK} \propto \int \iota_{k_{\{I}} \alpha \wedge \iota_{k_{J}} \omega_{K\}} = -\int \alpha \wedge \iota_{\{I} \iota_{k_{J}} \iota_{k_{K}\}} \mathrm{vol}^{\circ} = 0$$

Also

$$\delta \int_{C^I} \omega_J = \int_{C^I} \iota_{k_J} lpha = 0.$$

Method to obtain c_{IJK}

Step 1. Find any five-form vol° s.t. $\int vol^{\circ} = 1$.

Step2. Find invariant three-cycles C^I .

Step3. Find the dual ω_I by $\int_{C^I} \omega_J = \delta_J^I$ so that $d\omega_I + \iota_{k_I} \mathrm{vol}^\circ = 0$.

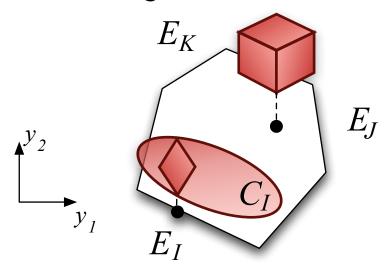
Step4. Plug in to $c_{IJK}=rac{N^2}{2}\int \omega_{\{I}\wedge \iota_{k_J}\omega_{K\}}.$

CONTENTS

- √ 1. Introduction & Summary
- ✓ 2. KK reduction
- √ 3. Giant Gravitons and Normalization of Charges
- ⇒ 4. Evaluation for the toric SE
- 5. Matching to quivers
- ♦ 6. Comments & Outloook

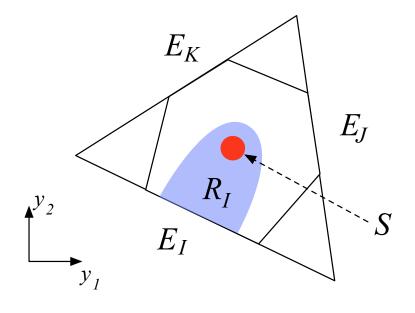
4. Evaluation for toric SEs

- \diamond The cone over a toric SE $X \curvearrowleft U(1)^3$ is a toric Calabi-Yau
- $\diamond \quad X \stackrel{\mathsf{mom. \ map}}{\longrightarrow} \mathsf{the \ interior \ of} \ d\mathsf{-gon} \ B \ \mathsf{with} \ T^3 \ \mathsf{fiber:}$

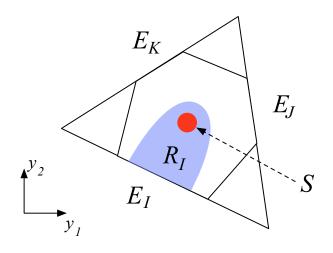


Coordinate along T^3 : $heta^{1,2,3}$ with $heta^i \sim heta^i + 1$

 \diamond $k_I=k_{I^i}\partial_{ heta^i}$ degenerates on E_I .



- \diamond Take ${\mathcal F}$ supported on S s.t. $\int_B {\mathcal F} = 1$
- \diamond Take \mathcal{A}_I supported on R_I s.t. $d\mathcal{A}_I=\mathcal{F}$



$$\mathrm{vol}^\circ = \mathcal{F} \wedge d\theta^1 d\theta^2 d\theta^3$$
 $\omega_I = -\mathcal{A}_I \wedge \iota_{k_I} d\theta^1 d\theta^2 d\theta^3$
 $d\omega_I + \iota_{k_I} \mathrm{vol}^\circ = 0$

 \diamond ω_I independent of other edges \Rightarrow c_{IJK} independent of $k_{L
eq I,J,K}$

- \diamond X: toric SE for the triangle $k_{I,J,K}$
- \diamond Y: Periodicity changed $heta^i \sim heta^i + k^i_{I,J,K}$ = S^5

$$\Rightarrow X = Y/\Gamma$$
 where $\Gamma = \mathbb{Z}^3/(\mathbb{Z} k_I + \mathbb{Z} k_J + \mathbb{Z} k_K)$ with $\#\Gamma = |\det(k_I,k_J,k_K)|$.

 $\Rightarrow c_{IJK}$ is $\#\Gamma$ times that of S^5 , which is $N^2/2$.

CONTENTS

- √ 1. Introduction & Summary
- ✓ 2. KK reduction
- √ 3. Giant Gravitons and Normalization of Charges
- √ 4. Evaluation for the toric SE
- ⇒ 5. Matching to quivers
 - ♦ 6. Comments & Outloook

5. Matching to Quivers

Toric Data ← Quivers

- ♦ Tiling ⇒ Toric Data: Forward Algorithm
- ♦ Toric Data ⇒ Tiling: Inverse Algorithm, Rhombi, ...
- Many works

Known Properties

Given the toric data sorted counterclockwise

$$k_I = (1, \vec{k}_I) \text{, } (I=1, \ldots, d)$$
 As (p,q)-web: $\emph{v}_\emph{i} = \vec{k}_I - \vec{k}_{I-1}$

- \diamond Gauge groups : all SU(N)
- # (Gauge groups) = Twice the area of the toric diagram
- \diamond **d** global nonanomalous U(1) symmetries Q_I . Consider $Q=a^IQ_I$.
- \diamond Chiral superfields classified into \mathcal{B}_{ij} s.t.
 - Net # \mathcal{B}_{ij} = $\det(\vec{v}_i, \vec{v}_j)$
 - ullet The charge under Q is $a_I + a_{I+1} + \cdots + a_{J-1}$
- \diamond Charge of the superpotential = $\sum a_I$

$$c_{IJK}a^Ia^Ja^K = \overbrace{n_V(\frac{1}{2}\sum a^I)^3}^{\text{gaugini}} + \underbrace{\sum_{I < J} n_{IJ} \left(\sum_{K=I}^{J-1} a^K - \frac{1}{2}\sum a^I\right)^3}_{\text{fermions in chiral multiplet}}$$

where

$$egin{aligned} n_{m{V}} &= \sum \det(ec{k}_{m{I}} - ec{k}_{1}, ec{k}_{m{I}+1} - ec{k}_{1}), \ n_{m{I}m{J}} &= \det(ec{k}_{m{J}} - ec{k}_{m{J}-1}, ec{k}_{m{I}} - ec{k}_{m{I}-1}) \end{aligned}$$

(Butti-Zaffaroni)

How can we simplify?

 \diamond Denote the quantity for toric data $\{k_1,\ldots,k_{N-1}\}$ by adding $\tilde{\ }$.

 $\Rightarrow \quad n_{I,N-1}+n_{I,N}= ilde{n}_{I,N-1} \quad ext{and} \quad n_V-n_{N-1,N}= ilde{n}_V.$ That is,

$$egin{aligned} \mathcal{B}_{I,N-1} & \cup \mathcal{B}_{I,N}
ightarrow ilde{\mathcal{B}}_{I,N-1} & ext{and} & \mathcal{G} - \mathcal{B}_{N-1,N}
ightarrow ilde{\mathcal{G}}. \ \\ & \Rightarrow & \left. c_{IJK} a^I a^J a^K
ight|_{a^N=0} = ilde{c}_{IJK} a^I a^J a^K. \end{aligned}$$

- \diamond c_{IJK} is independent of $k_{L
 eq I,J,K}$.
- \diamond One can check $c_{IJK} = rac{N^2}{2} |\det(k_I, k_J, k_K)|$.

CONTENTS

- √ 1. Introduction & Summary
- ✓ 2. KK reduction
- √ 3. Giant Gravitons and Normalization of Charges
- √ 4. Evaluation for the toric SE
- √ 5. Matching to quivers
- ⇒ 6. Comments & Outloook

6. Comments and Outlook

We obtained the formula

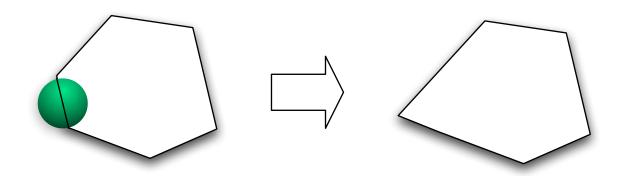
$$c_{IJK} = rac{N^2}{2} \int \omega_{\{I} \wedge \iota_{k_J} \omega_{K\}}$$

On both sides of the duality for toric SEs, we obtained

$$c_{IJK} = rac{N^2}{2} |\det(k_I,k_J,k_K)|$$

So far, so good.

Why is it independent of $k_{L
eq I,J,K}$?



- \diamond Consider D3-branes wrapping on L-th edge
- \diamond Dibaryons charged only w.r.t. L-th global symmetry
- Condense!
- \Rightarrow L-th global symmetry broken; L-th edge shrunk
- \diamond c_{IJK} can be evaluated before or after the Higgsing
- \Rightarrow Independent of k_L !

Outlook

- Study more about dibaryon condensation & topology change
 - Reminiscent of blackhole condensation & topology change in CY
- \diamond Study more about the charge lattice. $K_G(X)$?
- Study the SUSY on 5d, extend the reduction to scalars.

Much to be done!

7. On charge lattice

String theory : assigns to X a lattice of rank $\ell+b^3$.

- \diamond What is it mathematically ? $\Rightarrow \{\omega_I\}$ at the level of 'de Rham'
- Integral structure: not the direct sum of KK + D3

N : the space of Killing vectors. $N_{\mathbb{Z}}$: with periodicity 2π

M : dual of N. $M_{\mathbb{Z}}$: irreps of $U(1)^\ell$

- \diamond p: defined by $d\omega_I + \iota_{k_I} \mathrm{vol}^\circ = 0$
- ι: See blackboard ...

Your help appreciated.