5d Supergravity Dual of a-maximization

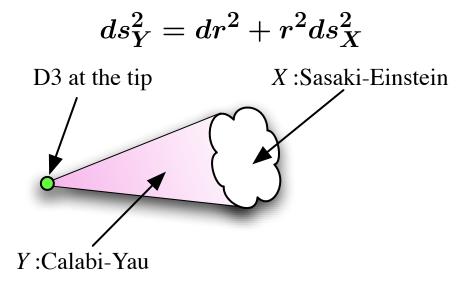
Yuji Tachikawa (Univ. of Tokyo, Hongo)

based on (YT, hep-th/0507057)

October, 2005 @ Caltech

1. Introduction

 \diamond Consider a D3 brane probing the tip of the CY cone Y



- Two way of analysis
 - Field theory on the $D3 \Rightarrow$ Some quiver gauge theory
 - Near Horizon Limit of the D3 \Rightarrow $\mathrm{AdS}_5 imes X_5$

Do the properties match?

- \diamond Both give a theory with SU(2,2|1) symmetry.
 - 4d $\mathcal{N} = 1$ SCFT from the field theory p.o.v.
 - Isometry of spacetime from the gravity p.o.v.
- ♦ Basic quantity : Central charge a and c a c : 1/N correction / higher-derivative correction
- \diamond How can we calculate a?

Field Theory Side

CY cone as toric singularity

 \Rightarrow quiver gauge theory (Hanany et al.)

 \Rightarrow *a*-maximization (Intriligator-Wecht)

Sasaki-Einstein Side

CY cone as toric singularity

 \Rightarrow Need to find Einstein metric on Sasaki-manifold

 \Rightarrow Z-minimization (Martelli-Sparks-Yau)

They match !

- ◊ A great check of AdS/CFT,
- Why do they match ?

cf. (Butti-Zaffaroni 0506232) showed by brute force that Z = 1/a after maximizing for baryonic symmetry, but no clear physical explanation yet.

cf. (Barnes-Gorbatov-Intriligator-Wright 0507146) showed the equivalence Z = 1/a on the vacua by considering two-point current correlators. Divide and Conquer ...

type IIB on
$$AdS_5 \times X_5$$

 $\downarrow \longleftarrow$ in a slow progress
5d gauged sugra on AdS_5
 $\uparrow \longleftarrow$ my work
4d SCFT

♦ 5d gauged sugra is very constrained,

just as the Seiberg-Witten theory.

• Some insight might be expected from this point of view ?

• My message today :

a-maximization in 4d is P-minimization in 5d.

 \diamond More common name for *P*-maximization is the Attractor Eq.

Historical Curiosity

In the penultimate paragraph in

(Ferrara-Zaffaroni 'N=1,2 SCFT and Supergravity in 5d' 9803060):

The presence of a scalar potential for supergravities in AdS5 allows to study critical points for different possible vacua in the bulk theory. It is natural to conjecture that these critical points should have a dual interpretation in the boundary superconformal field theory side.

They could have discovered a-maximization

before (Intriligator-Wecht, 0304128) !

CONTENTS

- \checkmark 1. Introduction
- \Rightarrow 2. *a*-maximization
- ◊ 3. 5d Gauged supergravity
- ♦ 4. How they match
- ◊ 5. Conclusion & Outloook

2. *a*-maximization

 $\mathcal{N}=1$ Superconformal Algebra in 4d

 $\{Q_{lpha}, S^{lpha}\} \sim R_{SC} + \cdots$ $[R_{SC}, Q_{lpha}] = -Q_{lpha}$

 \diamond **R_{SC}** carries a lot of info:

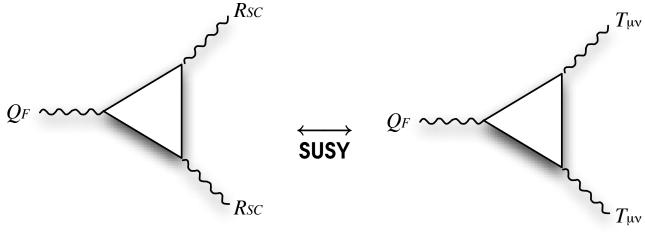
•
$$\Delta \geq \frac{3}{2}R_{SC}$$

• $a = \frac{3}{32}(3 \operatorname{tr} R_{SC}^3 - \operatorname{tr} R_{SC})$

cf.
$$\langle T^{\mu}_{\mu}
angle = a imes$$
 Euler $+ c imes$ Weyl 2

♦ Let Q_I be integral U(1) charges. $\Rightarrow R_{SC} = \tilde{s}^I Q_I$. How can we find \tilde{s}^I ?

◊ Let [Q_I, Q_α] = - P̂_IQ_α.
◊ Call Q_F = f^IQ_I with [Q_F, Q_α] = 0 a flavor symmetry.



 $9 \operatorname{tr} Q_F R_{SC} R_{SC} = \operatorname{tr} Q_F$

 $\diamond \quad [\tilde{s}^{I}Q_{I}, Q_{\alpha}] = -Q_{\alpha} \Rightarrow \tilde{s}^{I}\hat{P}_{I} = 1.$

$$\diamond$$
 Let $a(s) = rac{3}{32} (3 \operatorname{tr} R(s)^3 - \operatorname{tr} R(s))$ where $R(s) = s^I Q_I$.

- $\diamond \quad 9 \text{ tr } Q_F R_{SC} R_{SC} = \text{ tr } Q_F \Rightarrow \tilde{s}^I \text{ extremizes } a(s) \text{ under } s^I \hat{P}_I = 1.$
- \diamond Unitarity \Rightarrow it's a local maximum.

a-maximization !

- $\diamond \quad \text{Let } \hat{c}_{IJK} = \text{tr } Q_I Q_J Q_K \text{ and } \hat{c}_I = \text{tr } Q_I.$
- cf. Both calculable at UV using 't Hooft's anomaly matching.

CONTENTS

\checkmark 1. Introduction

- \checkmark 2. *a*-maximization
- \Rightarrow 3. 5d Gauged supergravity
- ♦ 4. How they match
- ♦ 5. Conclusion & Outloook

3. 5d gauged supergravity

Multiplet structure

- \diamond Minimal number of supercharges is 8, called $\mathcal{N}=2$
- ◊ Gravity multiplet, Vector multiplet, Hypermultiplet

Gravity multiplet

$$g_{\mu
u}, ~~\psi^i_\mu, ~~A^I_\mu$$

- \diamond i = 1, 2: index for $SU(2)_R$.
- \diamond I: explained in a second

Vector Multiplet

$$A^I_\mu, \qquad \lambda^x_i, \qquad \phi^x$$

$$\diamond \quad I: \mathbf{0}, \dots, n_V ext{ and } x: \mathbf{1}, \dots, n_V$$

cf. A^I_μ constitutes integral basis; graviphoton is a mixture.

 $\diamond \phi^x$ parametrize a hypersurface

$$F = c_{IJK}h^I h^J h^K = 1$$

in (n_V+1) dim space $\{h^I\} \Rightarrow h^I = h^I(\phi^x)$: sp. coordinates

◊ Kinetic terms are

$$-\frac{1}{2}g_{xy}\partial_{\mu}\phi^{x}\partial_{\mu}\phi^{y}-\frac{1}{4}a_{IJ}F^{I}_{\mu\nu}F^{J}_{\mu\nu}$$

where

$$g_{xy} = -3_{IJK}h^{I}_{,x}h^{J}_{,y}h^{K}$$

 $a_{IJ} = h_{I}h_{J} + rac{3}{2}g^{xy}h_{I,x}h_{J,y}$
 $h_{I} \equiv c_{IJK}h^{J}h^{K}$ (dual sp. coordinates)

◊ There is the Chern-Simons term

$$rac{1}{6\sqrt{6}}c_{IJK}\epsilon^{\mu
u
ho\sigma au}A^I_\mu F^J_{
u
ho}F^K_{\sigma au}$$

Hypermultiplet

$$q^X, \qquad \zeta^A$$

- $\diamond \quad X:1,\ldots,4n_H$, holonomy $SO(4n_H) \supset Sp(n_H) \otimes Sp(1)_R$
- $\diamond \quad A:1,\ldots,2n_H$ labels the fundamental of $Sp(n_H)$
- $\diamond \quad \text{Vierbein } f^X_{iA}\text{, } i=1,2$

 \diamond $Sp(1)_R$ part of the curvature is fixed:

$$R_{XYij}=-(f_{XiA}f^A_{Yj}-f_{YiA}f^A_{Xj})$$
We use $\{ij\} \longleftrightarrow r=1,2,3$

Gauging

• Potential is associated with the gauging of the hypers:

$$\partial_{\mu}q^X \longrightarrow D_{\mu}q^X = \partial_{\mu}q^X + A^I_{\mu} K^X_I$$

where K_I^X is triholomorphic:

$$\boldsymbol{K_I^X}\boldsymbol{R_X^r} = \boldsymbol{D_Y}\boldsymbol{P_I^r}$$

cf. P_I^r is a triplet generalization of the *D*-term. \diamond The potential *V* is given by

$$V=3g^{xy}\partial_x P^r \partial_y P^r + g^{XY} D_X P^r D_Y P^r - 4P^r P^r$$
 where $P^r=h^I P^r_I$

cf. Gukov-Vafa-Witten type superpotential.

- $\diamond P^r$ appears everywhere:

$$D_
u \psi^i_\mu = \partial_
u \psi^i_\mu + A^I_\mu P^i_{jI} \psi^j_I$$

• SUSY transformation law

$$egin{aligned} &\delta_{\epsilon} oldsymbol{\phi}^{x} = rac{i}{2} ar{\epsilon}^{i} \lambda_{i}^{x} \ &\delta_{\epsilon} \lambda_{x}^{i} = -\epsilon_{j} \sqrt{rac{2}{3}} \partial_{x} P^{ij} + \cdots \ &\delta_{\epsilon} q^{X} = -i ar{\epsilon}_{i} f^{XiA} \zeta_{A} \ &\delta_{\epsilon} \zeta_{A} = rac{\sqrt{6}}{4} ar{\epsilon}^{i} f_{XiA} K_{I}^{X} h^{I} + \cdots \end{aligned}$$

• Suppose
$$K_I^X = Q_{IY}^X q^Y + \cdots$$

where Q_{IY}^X is the charge matrix of the hypers.

 $\begin{array}{l} \diamond \quad \operatorname{Recall} K_{I}^{X} R_{XY}^{ij} = D_{Y} P_{I}^{ij} \\ \Rightarrow \text{ some calculation} \Rightarrow \\ projection \quad \begin{array}{c} Q_{IY}^{X} \in so(4n_{H}) \\ \downarrow & \cup \\ P_{I}^{ij} \in sp(1)_{R} \end{array}$

at $q^X = 0$.

CONTENTS

- \checkmark 1. Introduction
- \checkmark 2. *a*-maximization
- ✓ 3. 5d Gauged supergravity
- \Rightarrow 4. How they match
- ◊ 5. Conclusion & Outloook

4. How do they match?

Recap.

Field theory \Leftrightarrow Supergravity

 $\hat{c}_{IJK} = \operatorname{tr} Q_I Q_J Q_K \ [Q_I, Q_lpha] = - \hat{P}^I Q_lpha$

$$c_{IJK}h^{I}h^{J}h^{K}=1 \ D_{\mu}\psi^{i}_{
u}=(\partial_{\mu}+P^{i}_{jI}A^{I}_{\mu})\psi_{
u}$$

a-max

???

AdS/CFT correspondence

Thus, we need to introduce $\langle e^{-\int A^I_\mu J^\mu_I} \rangle_{SCFT}$.

 $egin{aligned} Q_I ext{ has triangle anomalies among them} \ &\Rightarrow \langle e^{-\int A^I_\mu J^\mu_I}
angle_{SCFT} ext{ depends on the gauge !} \ &\delta_g(\cdots) = \int d^4x rac{1}{24\pi^2} \hat{c}_{IJK} g^I F^J \wedge F^K \ &= \int d^5x rac{1}{24\pi^2} \hat{c}_{IJK} \delta_g(A^I) \wedge F^J \wedge F^K \ &c_{IJK} = rac{\sqrt{6}}{16\pi^2} \hat{c}_{IJK}. \end{aligned}$

 $\hat{c}_I = {
m tr}\, Q_I$ is related to $\hat{c}_I A^I \wedge {
m tr}\, R \wedge R$ in the same way.

 \diamond In the following, we set $\hat{c}_I \ll \hat{c}_{IJK}$.

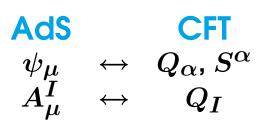
SUSY condition for sugra

$$\begin{array}{l} \diamond \quad \text{Assume } q^X = 0 \text{ and } \delta \zeta^A = 0. \\ \diamond \quad \text{Recall } \delta \lambda^i_x \propto \epsilon_j \partial_x P^{ij}. \Rightarrow \delta \lambda = 0 \Rightarrow \tilde{h}^I_{,x} P^{ij}_I = 0 \end{array}$$

◇ h^{*}_{,x} and P^r_{*} is perpendicular as (n_V + 1) dim'l vectors.
◇ x = 1,..., n_V ⇒ P^{r=1,2,3} are parallel.
◇ Rotate so that P^{r=1,2} = 0, P^{r=3} ≠ 0.

$$\circ \quad c_{IJK}h^{I}h^{J}h^{K} = 1 \Rightarrow \underbrace{c_{IJK}h^{I}h^{J}}_{h_{K}}h^{K}_{,x} = 0$$
$$\tilde{h}_{I} = kP_{I}^{r=3} : \text{Attractor Eq.}$$

◊ Recall



and

$$D_
u \psi^i_\mu = \partial_
u \psi^i_\mu + A^I_\mu P^i_{jI} \psi^j_I,$$

 \Rightarrow The charge of Q_{lpha} , S^{lpha} under Q_I is $\pm P_I^{r=3}$.

♦ Recall
$$[Q_I, Q_\alpha] = -\hat{P}_I Q_\alpha$$

⇒ $P_I^{r=3} = \hat{P}_I$.

 \diamond From the susy tr,

$$\{\delta_{\epsilon}, \delta_{\epsilon'}\}q^X \propto (\bar{\epsilon}\epsilon')h^I K_I^X$$
$$\Rightarrow R_{SC} = \tilde{s}^I Q_I \propto \tilde{h}^I Q_I.$$

- ♦ Recall $\tilde{s}^{I}P_{I} = 1$. $\Rightarrow \tilde{s}^{I} = \tilde{h}^{I}/(\tilde{h}^{I}P_{I})$.
- \diamond Extend the relation to $s^I = h^I/(h^I P_I) \Rightarrow$

$$a(s) \propto tr(s^{I}Q_{I})^{3} = \hat{c}_{IJK}s^{I}s^{J}s^{K} = rac{c_{IJK}h^{I}h^{J}h^{K}}{(h^{I}P_{I})^{3}} \propto (h^{I}P_{I})^{-3}.$$

 \diamond a-max = P-min !

$$\delta\lambda=h^I_{,x}P_I=(h^IP_I)_{,x}=P_{,x}=0$$

E.g. Exactly marginal deformation

AdS CFT $M_c \leftrightarrow$ 'Conformal manifolds'

♦ A puzzle

• M_c should have Kähler structure from CFT p.o.v.

• M_c must corresponds to **hyper**scalars, since vectors are fixed by a-max = P-min.

• Hypers are quaternionic, which is not Kähler. ???

$$\diamond \quad \delta \zeta^A = 0 \Rightarrow K^X = 0$$
 where $K^X \equiv ilde{h}^I K^X_I$.

- \diamond Superconformal deformation $\leftrightarrow M_c = \{q^X \in M_{\mathsf{hyper}} \, | \, K^X = 0\}$
- From $D_X P^r = R_{XY}^r K^X$, P^r is covariantly constant on M_c .
- \diamond Then M_c is Kähler, because

$$J^X_Y \equiv R^r_{YZ} g^{XZ} P_r / |P_r|$$

is a covariantly constant matrix with $J^2 = -1$.

a-max with Lagrange multipliers

♦ SCFT also has anomalous symmetries

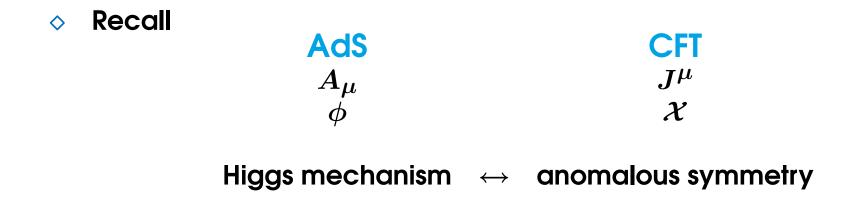
$$\partial_\mu J^\mu_I = \sum_a m^a_I$$
 tr $F^a \wedge F^a$

(Kutasov) extended the a-max to include them,

$$a(s^{I},\lambda_{a}) = a(s) + \frac{\lambda_{a}}{\lambda_{a}}m_{I}^{a}s^{I}$$

where λ_a are Lagrange multipliers enforcing the anomaly-free condition for R_{SC} .

 $\diamond \lambda_a$ behaves like coupling constant for $F^a_{\mu\nu}$.



It's because

 \diamond Let us denote by K_a^X the isometry for

$$\delta \phi_a = \epsilon, \qquad \phi_a \leftrightarrow \operatorname{tr} F^a \wedge F^a.$$

◊ It can be shown

 $egin{array}{ccc} K_a^X & ext{tr}\, F^a \wedge F^a \ P_a^{r=1,2} & \leftrightarrow & ext{tr}\, \epsilon^{lphaeta}\lambda^a_lpha\lambda^a_eta \ P_a^{r=3} & ext{tr}\, F^a_{\mu
u}F^a_{\mu
u} \end{array}$

CFT

 $\begin{tabular}{ll} P_a^{r=3} \mbox{ enters in the P-function as $P_a^{r=3}m_I^ah^I$ \\ \hline $The AdS dual of the coupling constant$ \\ $exactly acts as the Lagrange multiplier!$ \end{tabular} \end{tabular} \end{tabular} \end{tabular}$

AdS

5. Conclusion

DONE

 \sqrt{a} -maximization is *P*-minimization or the attractor eq.

 \checkmark Other correspondences. Please see my paper !

TO DO

- ◊ Dual of Higgsing, Dual of Unitarity Bound Hit, ...
- \diamond Include $\hat{c}_I A^I \wedge \operatorname{tr} R \wedge R$
- \diamond Calculate c_{IJK} for IIB on $\mathrm{AdS} imes X_5$ (in progress)