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Motivation

N = 8 Lagrangian [Bagger-Lambert,Gustavsson]
¢ Relevant to the study of M2-branes

e Classification via 3-algebra [Papadopoulos, Gauntlett-Gutowski]
[Nagy]

N = 4 Lagrangian [Gaiotto-Witten]
e Arose from the study of boundary cond. of N' =4 d = 4.
e Lagrangians clearly related to BLG...

N = 6 Lagrangian [Aharony-Bergman-Jafferis-Maldacena]
e Membrane on orbifolds.
e Enhancement mechanism quite understandable.

e Lagrangians clearly related to Gaiotto-Witten...
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o classification of N = 8 lagrangians

o classification of N/ = 6 lagrangians

e Better understanding of relations among [BLG,CW,ABJM]

[Hosomichi-Lee-Lee-Lee-Park]| appeared one week before ours.
o Theirs use their N' = 4 formalism.

e Ours use more pedestrian N = 2 formalism.
e Today’s talk combine aspects of both.
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[BLG, Gaiotto-Witten,ABJM]

Simply Amazing.
Aren’t Lagrangians with arbitrary (d, NV) totally explored in 1980s ?



Completely new class of Lagrangians unfolding in front of my eyes.
[BLG, Gaiotto-Witten,ABJM]

Simply Amazing.
Aren’t Lagrangians with arbitrary (d, NV) totally explored in 1980s ?

[ just love Lie algebras.
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V, &, adjoint of G
Qa, Q% chiral multiplets in R and R*
W = TP%Q,Q%®, with a specific coef.

has SU(2Q)r ~ Q, QT
Not Manifest in A = 1 formalism

?



W = fPI"Q,Q ., has SU(3)r
Manifest in A/ = 1 formalism

do not commute with SU(2)r
combine to form SU(4)r ~ Q, Q, &.
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SUSY enhancement

When Q, Q are adjoints

o W = querquﬁT has SU(3)F
e Manifest in N = 1 formalism

e do not commute with SU(2)r
e combine to form SU(4)r ~ Q, Q, .

In 3d
e classically conformal = quartic superpotential
e [Schwarz,2004] tried to use four adjoints
¢ no suitable fP9"¢, contrary to 4d case with fP9".

We now know how to circumvent this...

Yuji Tachikawa (IAS) September 2008

9/33



N -extended susy in 3d

o the same number of supercharges with A/ /2-extended susy in 4d
e SO(N) g symmetry

Nle v Q
32 2 3  hyper
412 2/ 4 hyper
2" 2 4 twisted-hyper
5/4 4 5
6 (4 4 6
7/8 8 7
8 [8s 8- 8y ultra
8c 8s 8y twisted-ultra

e These multiplets don’t have vectors in it ! Only possible in 3d
¢ need not be adjoint !
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Super Chern-Simons in 3d

o N = 2formalism in 3d ~ A = 1 formalism in 4d.
o N = 2 super CS for arbitrary G, chiral matter Q, superpotential W

S = kSnx=2cs + / d*0Q’eVQ + / d?0W + c.c.
o N = 3 when chiral matters are A in R, B in R*, & in adjoint
S = kSan—20cs + k / d? tr & + c.c.
+ /d40(ATeVA+ Bfe™VB) + /dza(Acsz) + c.c.

e SU(2)r ~ (A, BY)
¢ no kinetic term for & — can be integrated out
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e N = 3 when chiral matters are A in R, B in R*

S = kSnr—2cs + / d*0(ATeV A + BTeV B)

+ / d20f,;.7A°BPA°B? + c.c
* fabed = (k_l)qu:;;qu
e this can have enhanced symmetry,
¢ which does not commute with SU(2)g —> enhanced SUSY !



Example: N = 4

Take G = U(N)y x U(N)_y, A and B in the bifundamental
W =tr &3 — tr $3 + tr AB®; + tr BAD,

— W =tr(AB)?> —tr(BA)2 =0 !
has U(1) 4 X U(1)p acting on A and B separately

does not commute with SU(2)r ~ A, BT,

| A Y4 B s
J3€SUQ2)r|+1 -1 —1 +1
U(l)a +1 41 0 0
u(l)s 0 0 +1 +1

SO(4)r ~ A,BY, N =4
[Gaiotto-Witten|, although they used N = 1 formalism ...
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Example: A/ =6

Take G = U(N)g x U(IN)_, A; and B, i = 1,2

o W =trd2 — tr &3 + tr A;B'®; + tr B‘A; P,

- W = tI‘(14,;Bi)2 — tI‘(Bi14,,;)2 = Eijeab tr AiBaAij
has SU(2) 4 x SU(2) s acting on Aj 5 and BY2 separately

does not commute with SU(2)r ~ Ay 2, B2t
SU(4)r ~ A2, BT, N =6!
[Aharony-Bergman-Jafferis-Maldacenal

Yuji Tachikawa (IAS) September 2008 14/33



Example: A/ = 8

Take G = SU(2)x X SU(2)_x, C1.234 = (A1,2, B?)

o W =trd2 — tr &3 + tr A;B'®; + tr B‘A; P,

- W = tI‘(14,;Bi)2 — tI‘(Bi14,,;)2 = Eijeab tr AiBaAij
has SU(4) acting on C1,2,3.4

does not commute with SU(2)g ~ C, CT.
SO(8)r ~C,CT, N =8!
[Bagger-Lambert, Gustavsson]
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Half-hypermultiplets

A hyper of gauge group G : A in R and B in R*

A half-hyper of gauge group G: Q in R which is pseudo-real
SU(2) g acts on (Q, Q)

e.g. a doublet of SU(2).

two half-hyper @, @ in 2 of SU(2) forms a full-hyper

Why rarely discussed ?
— odd number of half-hypers often afflicted with
Witten’s global anomaly

No need to worry in 3d.
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N =4

Q : half-hyper in R.
W = kPI®, By + t1,5,Q°Q° — W = fapcaQ°Q°Q°Q*

where
-1
Sfabed = (k )Pqtgbtfz)d

R pseudo-real — th, =t} . Suppose furthermore fq(peqy = 0.

— W =0.— Ul)r ~ Q.

| Q@ g
J: €SUQ)r | +1 -1
u(l)r +1 +1

Enhancement to SO(4) r = SU(2) x SU(2). [Gaiotto-Witten]
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N =5

Q1,2 : two half-hypers in R. SO(2)r ~ Q1.2.
W = kPId B, + 7, 8,Q7Q0 — W = farcaQIQQ5Q4

where
Sabed = (k_l )pqtgbtrc)d

R pseudo-real — b, = tp . Suppose furthermore fq(pca) = 0.

— W = fabeac? M QQIQ5QY
—_— SU(2)F f\Ql’z.

Enhancement to USp(4)r ~~ (Q1,2, QI,z) [Hosomichi-Lee3-Park]
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N =6

A1,2 in R, Bl’2 in R*, SU(2)F mn A1,2, Bl’z.
W = kPP, P4 + tZ5¢pAgBBi — W= abch;-‘BBiA;B‘ij

where
-1
fabcd = (k )pthBtIc)&

Suppose furthermore f ;.3 = — fbad-

—_ W = fabcdeikélegBEjAZBdl.
— SU(Z)A N A1,2/ SU(2)B m Bl’z.

Enhancement to SU(4)r ~ (A1,2, B{z) [ABJM]
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N =8

A12in R, B2 inR*=R, strictly real.

W = kPid b, + th, B, AL BY —= W = fopeaA7BY” ASBY

where
Sabed = (k_l )Pqtgbtzc)d
R strictly real: t7, = —tp .. Suppose furthermore faped = fiabed]-

— W = fabeac?™ C}CICLCP.
— SU(4)r ~ C1234 = (A1, BY?)

Enhancement to SO(B)R n (01,2’3,4, 01’2,3’4T).
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fefg fcbad+ffea fcbgd+fgaf fcebd+fage fc_fb
equivalent to
fabcd

(k™ patoyt

cd’

fabcd = _fcbad

equivalent to
fal_md (k_l)Pqtp
N.B. our f_;.g = their f .2

fefgbfcbad+ ffeabfcbgd+ f*gafbfcebd+ f*a,gebfcfb =0

ab cd’

d pr—
Sabed = — fcbad:
o = v Q
C WuiTachikawa (AS o Sevtomber2008 21733
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Sabed = (k_l)Pqtgbtzc)d

o N = 4 if half-hyper in R pseudo-real, and

Sa(peay =0
e N =5 if two half-hypers in R pseudo-real and

Sapeay =0
e N = 6 if two hypers in R ® R* and

fabed = —Febad
e N = 8if two hypers in R ® R*, R strictly real, and

.f abcd = _.f cbad
o = = 9ac
~ VYuji Tachikawa (1A  September2008  22/33
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N =4,5
The conditions

Jabed = (k_l)pqtzbtgd’ tgb = tlr;a

and
Ja(pea) =0
are equivalent to the Jacobi identity of a superalgebra [Gaiotto-Witten]
[Bp’ Bq] = qu’f‘BT’
[B?, F,] = t8, J*F.,
{Fa, Fo} = (k™ ")pqtf, B
t?, : pseudoreal

Jb%¢ : the fundamental antisymmetric tensor.

N.B. Info on k also encoded in the superalgebra !
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Lie superalgebra

Classification done by [Kac,Scheunert-Nahm-Rittenberg].
Assume the bosonic part = semisimple + U(1)s

boson fermion
PSU(N|N) | SU(N)XSU(N) NXxN®N XN
SU(N|M) | SU(N)xSU(M)x U(1) | NXxM@M x N
OSp(IN|2M) | SO(IN)xUSp(2M) N x 2M
D(2,1;a) | SO(4)xUSp(2) 2x2'x2
G(3) G>xUSp(2) 7x2
F(4) SO(7)xUSp(2) 8 x2
P(N) SU(N +1) sym. @ antisym.
Q(N) SU(N +1) adj.

P(N), Q(N) are really weird objects, e.g. no invariant supertrace.
Their fermionic parts are not pseudoreal, etc.
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N =6,8

N = 6 is when the pseudoreal representation decomposes as R @ R*

gauge group | matter
SU(IN)xSU(N) N x N®&N x N
SU(N)xSU(M) x U(1) | N x MGM x N
SO(2) x USp(2M) 2M,; B2M_,

N.B. Vector representation N of SO(INV) is reducible only for N = 2 |

N = 8 is when the pseudoreal representation decomposes as R @& R*,
and furthermore R is strictly real.

gauge group ‘ matter
SU(2)xSU(2) [2x2®2x2

Done. [Hosomichi-Lee-Lee-Lee-Park]

Yuji Tachikawa (IAS) September 2008 26/33



N = 6,8 contd.

N = 6 fund. identity
T abed = -7 cbad
is a special case of N' = 4,5 fund. identity
P 0 ¥
faBep) =0 where tag =1 _ ab

p

as discussed in [Hosomichi-Lee3-Park].

Martin and I were rather stupid,
and didn’t understand this until we read their paper...

Instead we had (almost) classified directly representations which satisfy
the A/ = 6 fund. identity when their paper came out.
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N = 6,8 contd.

We later found our method was quite similar to
what Kac and Nahm did 30 years ago.

Yet we submitted our paper on arXiv, with a guilty conscience ...

| explain below how the uniqueness of N' = 8 can be proved,
without relying on the magic table provided by Nahm & Kac.

N = 6 is a bit more complicated, but of similar flavor.
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27
f(a,b,c,d) = Z (l)<b|T(Il))|a><d|T(zl7)|c>
=1
L

2w . .
o [ (blHGyla) (I lo)+

> B gy aiege)].

acA

l

We require

f(a,b,c,d) = —f(c,b,a,d)
when a, b, ¢, d are all real.



N =8

Now, take a = |w) + |w)*, b = |v) + |v)*
where w: highest weight state, |v) = T w).

0=—f(a,a,b,b) = f(a,b,a,b)
L

=Y ke Y |((wl + (W)L (v) + [0))].

=1 PEA,
Contradicts unless there’s a root o s.t.
lv) = T7|w)™.

Only two steps T~ ~°
from the highest weight |w) to the lowest | —w).
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N =8

Only two steps T~ from the h.w. |w) to the L.w. |—w).

This is a rather strong condition. w = (A + ) /2.
Implies the length squared (LS) of w is < 1.
Such representations are rare.

1. fundamental of SU(IV), LS=1-1/N.
2. vector of SO(N), LS=1.

3. spinor of SO(7), SO(8), SO(9), LS=3/4, 1, 1.
4. vector of USp(2N), LS=1/2.

5. antisymmetric traceless of USp(2IN), LS=1

6. 26 of Fy. LS=1.

and combination thereof.
Only SU(2) x SU(2) with bifundamental is allowed.
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e Classification

e via Lie superalgebra
o direct analysis ...

e SUSY enhancement a la ABJM from N =3 to N = 4,5,6,8

e Dynamics of newly found N = 5, 6 theories ?
o N = 4,5 theory in terms of 3-algebras ?

¢ Non-ABJM-type enhancement ¢ unlikely, but not ruled out ...
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