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Motivation

N = 8 Lagrangian [Bagger-Lambert,Gustavsson]
• Relevant to the study of M2-branes
• Classification via 3-algebra [Papadopoulos,Gauntlett-Gutowski]
[Nagy]

N = 4 Lagrangian [Gaiotto-Witten]
• Arose from the study of boundary cond. of N = 4 d = 4.
• Lagrangians clearly related to BLG...

N = 6 Lagrangian [Aharony-Bergman-Jafferis-Maldacena]
• Membrane on orbifolds.
• Enhancement mechanism quite understandable.
• Lagrangians clearly related to Gaiotto-Witten...
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Motivation

Aim
• classification of N = 8 lagrangians
• classification of N = 6 lagrangians

• Better understanding of relations among [BLG,GW,ABJM]

[Hosomichi-Lee-Lee-Lee-Park] appeared one week before ours.
• Theirs use their N = 4 formalism.
• Ours use more pedestrian N = 2 formalism.
• Today’s talk combine aspects of both.
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Personal Motivation

Completely new class of Lagrangians unfolding in front of my eyes.
[BLG,Gaiotto-Witten,ABJM]

Simply Amazing.
Aren’t Lagrangians with arbitrary (d,N ) totally explored in 1980s ?

I just love Lie algebras.
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SUSY enhancement

d = 4 N = 2 in N = 1 notation
• V , Φp: adjoint of G
• Qa, Q̃a: chiral multiplets in R and R∗

• W = T pa
bQaQ̃

bΦp with a specific coef.

• has SU(2)R yyy Q, Q̃†

• Not Manifest in N = 1 formalism

Yuji Tachikawa (IAS) September 2008 8 / 33



SUSY enhancement

When Q, Q̃ are adjoints

• W = fpqrQpQ̃qΦr has SU(3)F

• Manifest in N = 1 formalism

• do not commute with SU(2)R

• combine to form SU(4)R yyy Q, Q̃, Φ.

In 3d
• classically conformal quartic superpotential
• [Schwarz,2004] tried to use four adjoints
• no suitable fpqrs, contrary to 4d case with fpqr.

We now know how to circumvent this...
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N -extended susy in 3d

• the same number of supercharges with N/2-extended susy in 4d
• SO(N )R symmetry

N φ ψ Q

3 2 2 3 hyper
4 2 2′ 4 hyper

2′ 2 4 twisted-hyper
5 4 4 5
6 4 4 6
7 8 8 7
8 8S 8C 8V ultra

8C 8S 8V twisted-ultra

• These multiplets don’t have vectors in it ! Only possible in 3d
• need not be adjoint !
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Super Chern-Simons in 3d

• N = 2 formalism in 3d ' N = 1 formalism in 4d.
• N = 2 super CS for arbitrary G, chiral matter Q, superpotentialW

S = kSN=2CS +

∫
d4θQ†eVQ+

∫
d2θW + c.c.

• N = 3 when chiral matters are A in R, B in R∗, Φ in adjoint

S = kSN=2CS + k

∫
d2 trΦ2 + c.c.

+

∫
d4θ(A†eVA+B†e−VB) +

∫
d2θ(AΦB) + c.c.

• SU(2)R yyy (A,B†)

• no kinetic term for Φ can be integrated out
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N = 3 super Chern-Simons in 3d

• N = 3 when chiral matters are A in R, B in R∗

S = kSN=2CS +

∫
d4θ(A†eVA+B†e−VB)

+

∫
d2θfab̄cd̄A

aBb̄AcBd̄ + c.c.

• fab̄cd̄ = (k−1)pqT
p

ab̄
T q

cd̄

• this can have enhanced symmetry,
• which does not commute with SU(2)R enhanced SUSY !
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Example: N = 4

• Take G = U(N)k × U(N)−k, A and B† in the bifundamental
• W = trΦ2

1 − trΦ2
2 + trABΦ1 + trBAΦ2

W = tr(AB)2 − tr(BA)2 = 0 !
• has U(1)A × U(1)B acting on A and B separately

• does not commute with SU(2)R yyy A,B†.

A ψA B ψB

J3 ∈ SU(2)R +1 −1 −1 +1
U(1)A +1 +1 0 0
U(1)B 0 0 +1 +1

• SO(4)R yyy A,B†, N = 4 !
• [Gaiotto-Witten], although they used N = 1 formalism ...
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Example: N = 6

• Take G = U(N)k × U(N)−k, Ai and Bi†, i = 1, 2

• W = trΦ2
1 − trΦ2

2 + trAiB
iΦ1 + trBiAiΦ2

W = tr(AiB
i)2 − tr(BiAi)

2 = εijεab trAiB
aAjB

b

• has SU(2)A × SU(2)B acting on A1,2 and B1,2 separately

• does not commute with SU(2)R yyy A1,2, B
1,2†.

• SU(4)R yyy A1,2, B
1,2†, N = 6 !

• [Aharony-Bergman-Jafferis-Maldacena]
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Example: N = 8

• Take G = SU(2)k × SU(2)−k, C1,2,3,4 = (A1,2, B
1,2)

• W = trΦ2
1 − trΦ2

2 + trAiB
iΦ1 + trBiAiΦ2

W = tr(AiB
i)2 − tr(BiAi)

2 = εijεab trAiB
aAjB

b

• has SU(4) acting on C1,2,3,4

• does not commute with SU(2)R yyy C,C†.
• SO(8)R yyy C,C†, N = 8 !
• [Bagger-Lambert,Gustavsson]
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Half-hypermultiplets

• A hyper of gauge group G : A in R and B in R∗

• A half-hyper of gauge group G: Q in R which is pseudo-real
• SU(2)R acts on (Q,Q†)

• e.g. a doublet of SU(2).
• two half-hyper Q, Q̃ in 2 of SU(2) forms a full-hyper
• Why rarely discussed ?

odd number of half-hypers often afflicted with
Witten’s global anomaly

• No need to worry in 3d.
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N = 4

Q : half-hyper in R.

W = kpqΦpΦq + tpabΦpQ
aQb W = fabcdQ

aQbQcQd

where
fabcd = (k−1)pqt

p
abt

p
cd

R pseudo-real tpab = tpba. Suppose furthermore fa(bcd) = 0.

W = 0. U(1)F yyy Q.

Q ψQ

J3 ∈ SU(2)R +1 −1
U(1)F +1 +1

Enhancement to SO(4)R = SU(2) × SU(2). [Gaiotto-Witten]
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N = 5

Q1,2 : two half-hypers in R. SO(2)F yyy Q1,2.

W = kpqΦpΦq + tpabΦpQ
a
iQ

b
i W = fabcdQ

a
iQ

b
iQ

c
jQ

d
j

where
fabcd = (k−1)pqt

p
abt

p
cd

R pseudo-real tpab = tpba. Suppose furthermore fa(bcd) = 0.

W = fabcdε
ijεklQa

iQ
b
jQ

c
kQ

d
l .

SU(2)F yyy Q1,2.

Enhancement to USp(4)R yyy (Q1,2, Q
†
1,2) [Hosomichi-Lee3-Park]
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N = 6

A1,2 in R, B1,2 in R∗, SU(2)F yyy A1,2, B
1,2.

W = kpqΦpΦq + tp
ab̄
ΦpA

a
iB

b̄i W = fabcdA
a
iB

b̄iAc
jB

d̄j

where
fabcd = (k−1)pqt

p

ab̄
tp
cd̄

Suppose furthermore fab̄cd̄ = −fcb̄ad̄.

W = fabcdε
ikεjlA

a
iB

b̄jAc
kB

d̄l.

SU(2)A yyy A1,2, SU(2)B yyy B1,2.

Enhancement to SU(4)R yyy (A1,2, B
†
1,2) [ABJM]
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N = 8

A1,2 in R, B1,2 in R∗ = R, strictly real.

W = kpqΦpΦq + tpabΦpA
a
iB

bi W = fabcdA
a
iB

biAc
jB

dj

where
fabcd = (k−1)pqt

p
abt

p
cd

R strictly real: tpab = −tpba. Suppose furthermore fabcd = f[abcd].

W = fabcdε
ijklCa

i C
b
jC

c
kC

d
l .

SU(4)F yyy C1,2,3,4 = (A1,2, B
1,2)

Enhancement to SO(8)R yyy (C1,2,3,4, C1,2,3,4
†).
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Fundamental Identities

N = 8 [Gustavsson]

fefg
bf

cba
d + ffea

bf
cbg

d + fgaf
bf

ceb
d + fage

bf
cfb

d = 0

equivalent to

fabcd = (k−1)pqt
p
abt

q
cd, fabcd = −fcbad.

N = 6 [Bagger-Lambert]

fefg
bf

cba
d + ffea

bf
cbg

d + f∗gaf
bf

ceb
d + f∗age

bf
cfb

d = 0

equivalent to

fab̄cd̄ = (k−1)pqt
p

ab̄
tq
cd̄
, fab̄cd̄ = −fcb̄ad̄.

N.B. our fab̄cd̄ = their facd̄b̄
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Summary

fabcd = (k−1)pqt
p
abt

p
cd

• N = 4 if half-hyper in R pseudo-real, and

fa(bcd) = 0

• N = 5 if two half-hypers in R pseudo-real and

fa(bcd) = 0

• N = 6 if two hypers in R⊕R∗ and

fab̄cd̄ = −fcb̄ad̄

• N = 8 if two hypers in R⊕R∗, R strictly real, and

fabcd = −fcbad
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N = 4, 5

The conditions

fabcd = (k−1)pqt
p
abt

p
cd, tpab = tpba

and
fa(bcd) = 0

are equivalent to the Jacobi identity of a superalgebra [Gaiotto-Witten]

[Bp, Bq] = fpq
rB

r,

[Bp, Fa] = tpabJ
bcFc,

{Fa, Fb} = (k−1)pqt
p
abB

q.

tpab : pseudoreal

Jbc : the fundamental antisymmetric tensor.

N.B. Info on k also encoded in the superalgebra !
Yuji Tachikawa (IAS) September 2008 24 / 33



Lie superalgebra

Classification done by [Kac,Scheunert-Nahm-Rittenberg].
Assume the bosonic part = semisimple + U(1)s

boson fermion
PSU(N |N) SU(N)×SU(N) N × N̄ ⊕ N̄ × N
SU(N |M) SU(N)×SU(M) × U(1) N × M̄ ⊕ M̄ × N

OSp(N |2M) SO(N)×USp(2M) N × 2M
D(2, 1;α) SO(4)×USp(2) 2 × 2′ × 2
G(3) G2×USp(2) 7 × 2
F (4) SO(7)×USp(2) 8 × 2
P (N) SU(N + 1) sym.⊕ antisym.
Q(N) SU(N + 1) adj.

P (N), Q(N) are really weird objects, e.g. no invariant supertrace.
Their fermionic parts are not pseudoreal, etc.
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N = 6, 8

N = 6 is when the pseudoreal representation decomposes as R⊕R∗

gauge group matter
SU(N)×SU(N) N × N̄ ⊕N̄ × N
SU(N)×SU(M) × U(1) N × M̄⊕M̄ × N
SO(2)×USp(2M) 2M+1 ⊕2M−1

N.B. Vector representation N of SO(N) is reducible only forN = 2 !

N = 8 is when the pseudoreal representation decomposes as R⊕R∗,
and furthermore R is strictly real.

gauge group matter
SU(2)×SU(2) 2 × 2 ⊕ 2 × 2

Done. [Hosomichi-Lee-Lee-Lee-Park]
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N = 6, 8 contd.

N = 6 fund. identity
fab̄cd̄ = −fcb̄ad̄

is a special case of N = 4, 5 fund. identity

fA(BCD) = 0 where tpAB =

(
0 tp

ab̄
−tp

b̄a
0

)
as discussed in [Hosomichi-Lee3-Park].

Martin and I were rather stupid,
and didn’t understand this until we read their paper...

Instead we had (almost) classified directly representations which satisfy
the N = 6 fund. identity when their paper came out.
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N = 6, 8 contd.

We later found our method was quite similar to
what Kac and Nahm did 30 years ago.

Yet we submitted our paper on arXiv, with a guilty conscience ...

I explain below how the uniqueness of N = 8 can be proved,
without relying on the magic table provided by Nahm & Kac.

N = 6 is a bit more complicated, but of similar flavor.
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N = 8

f(a, b, c, d) =
L∑

l=1

2π

kl
g(l)

pq〈 b|T p
(l)|a 〉〈 d|T p

(l)|c 〉

=
L∑

l=1

2π

kl

[∑
i

〈 b|Hi
(l)|a 〉〈 d|Hi

(l)|c 〉+

∑
α∈∆

|α|2

2
〈 b|Eα

(l)|a 〉〈 d|E−α
(l) |c 〉

]
.

We require
f(a, b, c, d) = −f(c, b, a, d)

when a, b, c, d are all real.
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N = 8

Now, take a = |w〉 + |w〉∗, b = |v〉 + |v〉∗

where w: highest weight state, |v〉 = T−λ|w〉.

0 = −f(a, a, b, b) = f(a, b, a, b)

=
L∑

`=1

k`

∑
ρ∈∆`

∣∣(〈w| + 〈w|∗)T ρ
` (|v〉 + |v〉∗)

∣∣2.
Contradicts unless there’s a root σ s.t.

|v〉 = T σ|w〉∗.

Only two steps T−λT−σ

from the highest weight |w〉 to the lowest |−w〉.

w

−w

−v

v
λ

σ ?
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N = 8

Only two steps T−λT−σ from the h.w. |w〉 to the l.w. |−w〉.

This is a rather strong condition. w = (λ+ σ)/2.
Implies the length squared (LS) of w is ≤ 1.
Such representations are rare.

1. fundamental of SU(N), LS=1-1/N.
2. vector of SO(N), LS=1.
3. spinor of SO(7), SO(8), SO(9), LS=3/4, 1, 1.
4. vector of USp(2N), LS=1/2.
5. antisymmetric traceless of USp(2N), LS=1
6. 26 of F4. LS=1.

and combination thereof.
Only SU(2) × SU(2) with bifundamental is allowed.
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Summary

Reviewed
• SUSY enhancement à la ABJM from N = 3 to N = 4, 5, 6, 8

• Classification
• via Lie superalgebra
• direct analysis ...

To be done
• Dynamics of newly found N = 5, 6 theories ?
• N = 4, 5 theory in terms of 3-algebras ?
• Non-ABJM-type enhancement ? unlikely, but not ruled out ...
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