2017年度夏学期 場の量子論 I
   [学部4年生 + 大学院 共通講義]
2017 S-semester, Quantum Field Theory I
   [common course for undergraduate and graduate students]
担当:浜口幸一(ホームページ)
Instructor: Koichi Hamaguchi (homepage)
お知らせ。Announcent
   [Last updated: July 31.]
- 期末試験の問題と解答をアップしました。(解答に修正あり 2018.7.26)
The final exam problems and solutions are uploaded. (a solution corrected, 2018.7.26).
 
- 7/31 のノートをアップしました。
The lecture note on July 31 is uploaded.
 
- (Dirac場の量子化を終わらせるために) 7/31 に補講を行います。
We will have an extra class on July 31 (in order to finsih the quantization of Dirac field.)
 
- レポート問題をアップしました。(6/5)
The homework (report) problems are uploaded. (June 5)
 
- 成績はレポート(6月5日出題)と期末試験(7月24日に予定)を総合して評価します。
試験はノート、教科書、ノートPCなど持ち込み可です。
Grades are given based on the scores of homework problems (given on June 5) and the exam (planned on July 24).
In the exam, you can bring notes, textbooks, laptop, etc.
 
- 板書は英語、話すのは日本語で行う予定です。
I plan to speak mainly in Japanese and write mainly in English (on the blackboard).
 
毎週月曜2限(10:25-12:10), 理学部1号館、206号室
Monday 10:25-12:10, room 206, Faculty of Science Bldg.1.
Apr. 10, 17, 24,
May 1, 8, 15, 29,   (no class on May 22),
June 5, 12, 19, 26,
July 3, 10,
  Exam on July 24
We have an extra class on July 31.
期末試験。Final Exam
問題 / Problems
解答例 / Answers
レポート。Homework Problems
QFT_2017_report.pdf
講義ノート。Lecture notes
QFT_2017.pdf
講義内容。Contents
(Note: It is a tentative plan, and will be updated every week once the lecture course starts.)
- Introduction
- about this lecture (Language, Web page, Schedule, Grades,...) [Apr.10]
- 0.1. Course objectives [Apr.10]
- 0.2. Quantum Mechanics and Quantum Field Theory [Apr.10]
- 0.3. Notation and convention [Apr.10]
- 0.4. Various fields [Apr.10]
- 0.5. Outline [Apr.10]
- 0.6. S-matrix, amplitude M ==> observables. [Apr.10, 17, 24]
- Scalar (spin 0) Field
- 1.1. Lorentz transformatin [Apr.24]
- 1.2. Lagrangian and Canonical Quantization of Scalar Field [Apr.24, May 1]
- 1.3. Equation of motion [May 1]
- 1.4. Free Scalar Field [May 1, 8]
- 1.5. Interacting Scalar Field [May 15]
- 1.5.1. What is φ(x)? [May 15]
- 1.5.2. In/out states and the LSZ Reduction Formula [May 15, 29]
- 1.5.3. Heisenberg field and Interactin picture field [May 29]
- 1.5.4. a and a† (again) [May 29]
- 1.5.5. <0| T( φ(x) ...) |0> =? [June 5]
- 1.5.6. Wick's theorem [June 5, 12]
- 1.5.7. Summary, Feynman rules, examples [June 12, 19]
- Fermion (spin 1/2) Field
- 2.1. Representations of the Lorentz Group [June 19]
- 2.1.1. Lorentz Transformation of coordinates (again) [June 19]
- 2.1.2. Infinitesimal Lorentz Transformation and generators of Lorentz group (in the 4-vector basis) [June 19]
- 2.1.A. Other (disconnected) Lorentz transformations [June 19]
- 2.1.3. Lorentz transformations of fields, and representations of Lorentz group [June 19 and 26]
- 2.1.4. Spinor Fields [June 26, July 3]
- 2.1.5. Lorentz transformation of spinor bilinears [July 3]
- 2.2. Free Dirac Field
- 2.2.1. Lagrangian [July 3, 10]
- 2.2.2. Dirac equation and its solution [July 10]
- 2.2.3. Quantization of Dirac field [July 10, 31]
特定の教科書・参考書はありませんが、講義ノートを作る際に参考にした本をいくつかあげておきます。
This course is not based on a specific textbook, but I often refer to the following textbooks during preparing the lecture note.
- M. Srednicki, Quantum Field Theory.
- M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory.
- M. D. Schwartz, Quantum Field Theory and the Standard Model.
- S. Weinberg, The Quantum Theory of Fields volume I.
- 「ゲージ場の量子論 I」九後汰一郎、培風館.
- 「場の量子論」坂井典佑、裳華房.
浜口幸一(講義のページ/ホームページ)
Koichi Hamaguchi:homepage
http://www-hep.phys.s.u-tokyo.ac.jp/~hama/lectures/2017_QFT.html