Reliability of nuclear matrix elements of neutrinoless double-β decay by QRPA

J. Terasaki, Czech Tech. Univ. in Prague

- 1. Brief introduction
- 2. Check of application of QRPA to $^{136}Xe \rightarrow ^{136}Ba$
- 3. Brief discussion on g_A
- 4. Prospect

Feb. 15, 2020

Abbreviations and notation

- QRPA: quasiparticle random-phase approximation, an approximation for obtaining nuclear wave functions.
- GT: Gamow-Teller, GT transition is a charge-change transition by the weak interaction involving spin operator
- g_{A} : axial-vector current coupling, strength of the GT component of the weak interaction.
- $0\nu\beta\beta$: neutrinoless double- β
- $2\nu\beta\beta$: two-neutrino double- β
- NME: nuclear matrix element

Introduction

My motivation: to obtain the neutrino mass

Background of my study

 $0\nu\beta\beta$ decay of nucleus gives one of the limited methods for this aim.

If the neutrino is a Majorana particle, and the half-life is measured, the effective neutrino mass can be obtained.

Theory needs to supply the NME and the phase-space factor.

The latter is OK.

The NME is distributed in the range of a factor of 2-3 depending on method.

Investigation of the reliability of NME calculation.

Examinations of NME calculation of $^{136}Xe \rightarrow ^{136}Ba$ that I have done so far

Comparison with relevant exp. data

- Higher-order terms of $2\nu\beta\beta$ NME
- GT strength of ${}^{136}Xe \rightarrow {}^{136}Cs$

others

Self check of calculation

- GT sum rule
- Convergence of 0vββ NME with respect to intermediate states.
- others

Higher-order term of NME of 2vßß decay

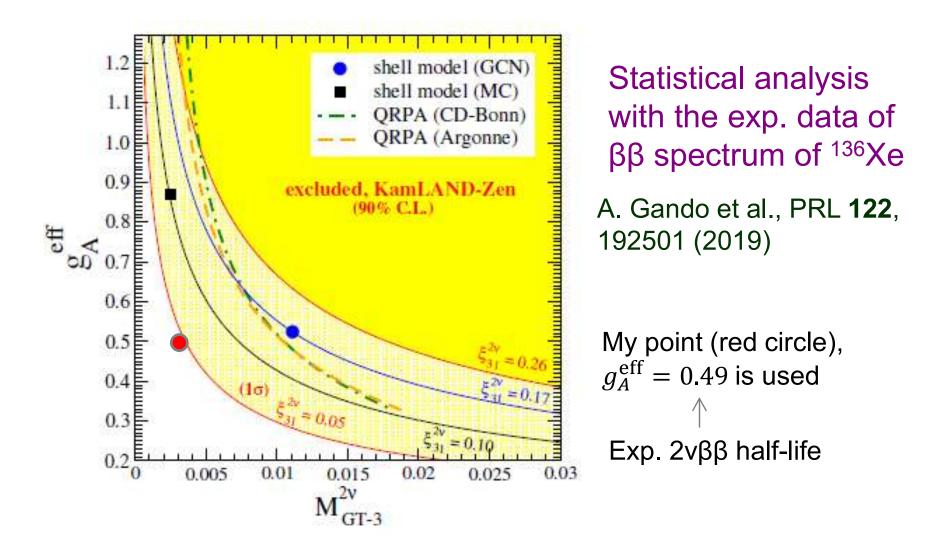
$$M_{\rm GT-3}^{2\nu} = \sum_{j} \frac{4}{\{E_j - (E_i + E_f)/2\}^3} \langle 0_f^+ | \sum_{l} (\boldsymbol{\sigma} \tau^-)_l | 1_j^+ \rangle$$
$$\cdot \langle 1_j^+ | \sum_{l} (\boldsymbol{\sigma} \tau^-)_l | 0_l^+ \rangle.$$

F. Šimkovic et al., PRC 97, 034315 (2018)

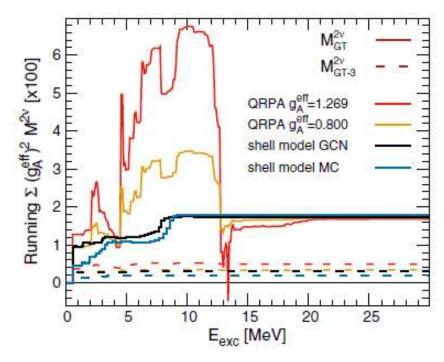
 E_j : intermediate-state energy, E_f : final-state energy, E_i : initial-state energy

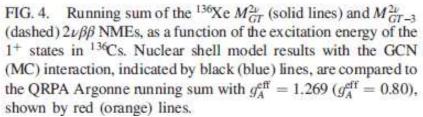
$$M_{\rm GT}^{2\nu} = \sum_{j} \frac{1}{E_{j} - (E_{i} + E_{f})/2} \langle 0_{f}^{+} | \sum_{l} (\boldsymbol{\sigma}\tau^{-})_{l} | 1_{j}^{+} \rangle$$
$$\cdot \langle 1_{j}^{+} | \sum_{l} (\boldsymbol{\sigma}\tau^{-})_{l} | 0_{l}^{+} \rangle.$$

Higher-order term of NME of 2vßß decay

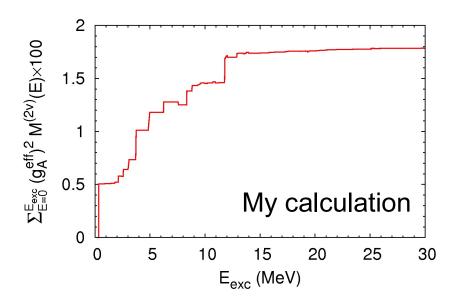


Running sum of $2\nu\beta\beta$ NME





A. Gando et al., PRL **122**, 192501 (2019)



 $g_A^{\text{eff}} = 0.49$ No adjustment of interaction

GT⁻ strength of $^{136}Xe \rightarrow ^{136}Cs$

D. Frekers et al., Nucl. Phys. A 916, 219 (2013)

The authors obtained the GT strengths from the cross section of ¹³⁶Xe(³He,t)¹³⁶Cs reaction and calibrated them using the *logft* values of electron capture.

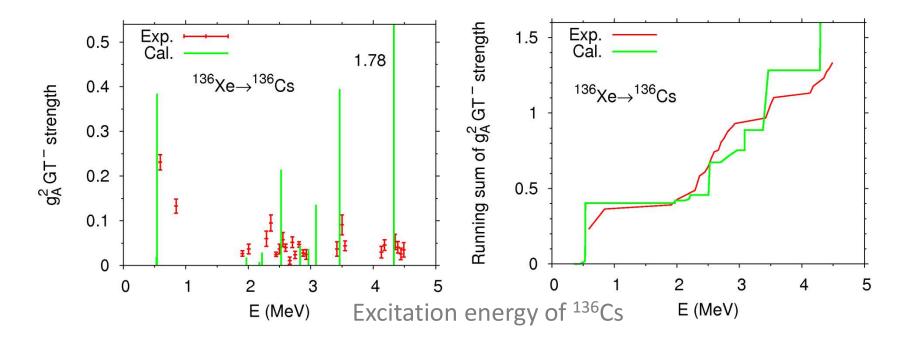
Textbook of J. Suhonen, (Springer, Berlin, 2007)

$$\tilde{B}_{GT} + \tilde{B}_F = 6147 \times 10^{-\log ft},$$

$$\tilde{B}_{GT} = \frac{g_A^2}{2J_I + 1} \left| \langle F | \boldsymbol{\sigma} \tau_{\pm} | I \rangle \right|^2 = g_A^2 B_{GT}, (J_I = 0)$$

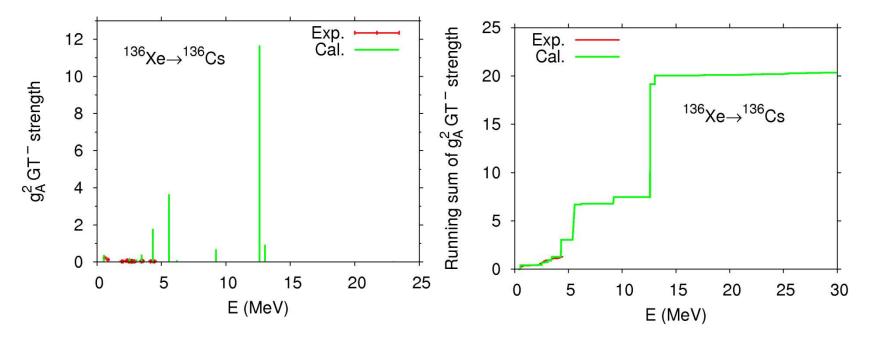
I calculated $g_A^2 B_{GT}$ using g_A 0.49 reproducing the exp. $2\nu\beta\beta$ decay half-life.

Exp. data and calculation of $g_A^2 \times GT^-$ strength



- The tendency of the exp. level distribution is well reproduced.
- The calculation with g_A from the exp. data of $2\nu\beta\beta$ decay is consistent with the electron capture in terms of the GT strength.

Exp. data and calculation of $g_A^2 \times GT^-$ strength



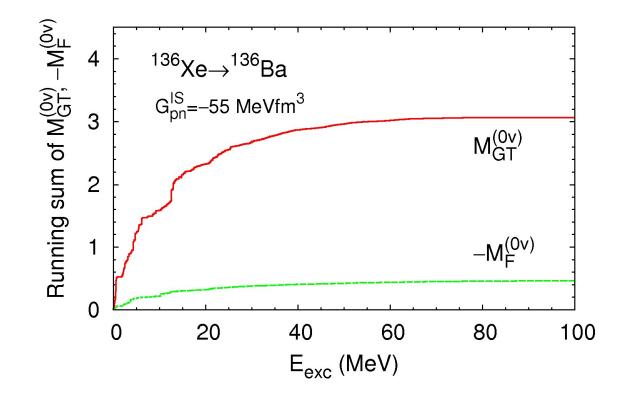
GT sum rule is satisfied.

 $\sum GT^{-}(^{136}Xe \rightarrow ^{136}Cs) - \sum GT^{+}(^{136}Xe \rightarrow ^{136}I)$ = 85.145 - 1.138 = 84.007.

Analytical value is 3(N-Z) = 84.

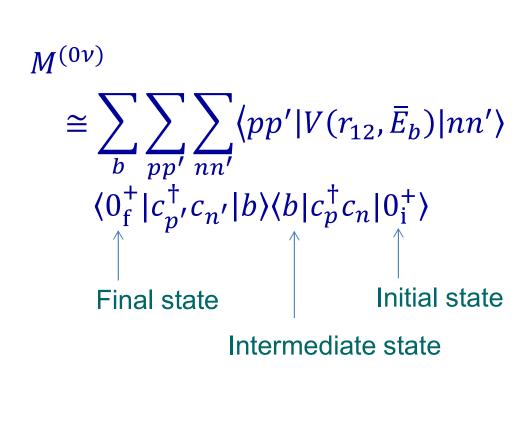
 \rightarrow The single-particle space is large enough for the sum rule.

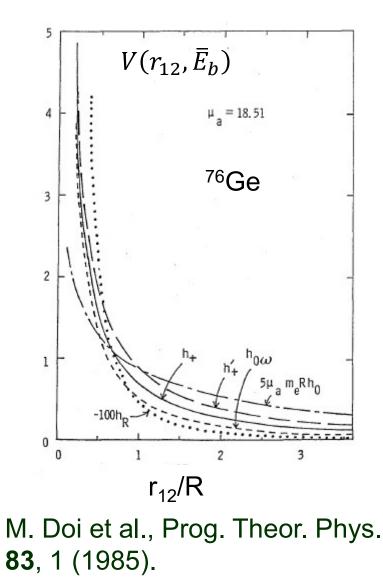
Running sum of $0\nu\beta\beta$ NME



Convergence around E_{exc} = 60 MeV. A much larger energy region is necessary than for GT sum rule and $2\nu\beta\beta$ NME.

Ονββ ΝΜΕ





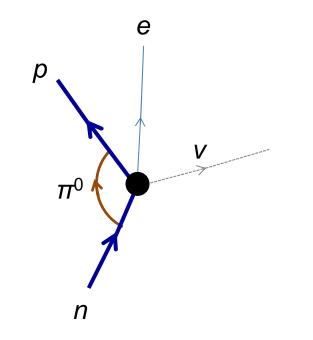
Effective g_A

Looking around data and calculations of nuclear physics, the following tendency is seen:

The appreciable quenching is necessary for the GT transition. This is confirmed in E < 10-15 MeV roughly. Enhancement may be necessary in the higher-energy region at least for the result of QRPA.

The isobaric-analog transition does not need a quenching factor; vector current coupling $g_V = 1$.

Electric transition can be reproduced approximately well by using the *bare charge* in QRPA for magic, near-magic and well-deformed nuclei.



Is the vertex correction more important, if the transition operator • includes the spin operator? If so, why? Comments are welcome.

Is effective g_A for $0v\beta\beta$ equal to that for other weak phenomena?

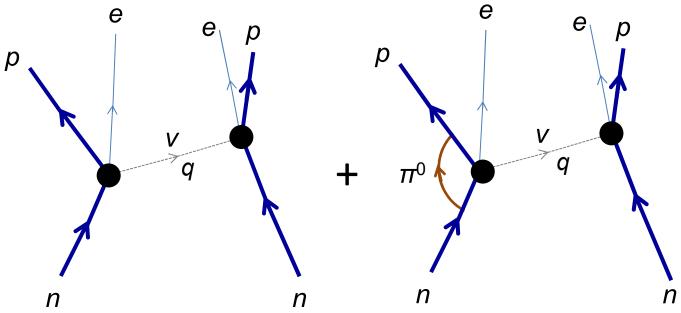
The difference between the $0\nu\beta\beta$ and other weak phenomena is the neutrino potential, which is obtained by the Fourier transformation of the neutrino propagator + correction terms. The integrand has a peak around 200 MeV/c.

If different, there are possible two reasons.

1. If the single-particle space is not sufficiently large, obviously g_A for $0\nu\beta\beta \neq g_A$ for others.

This is not the case for my calculation.

2. If the vertex correction depends on the major value of q, g_A for $0\nu\beta\beta$ might be different from g_A for others.



These diagrams are embedded in a nucleus.

Prospect

Advantage of QRPA

Very large single-particle space can be used, so that the convergence of the $0\nu\beta\beta$ NME is possible to obtain <u>for all candidate nuclei</u> up to ¹⁵⁰Nd of the $0\nu\beta\beta$ decay.

Disadvantage

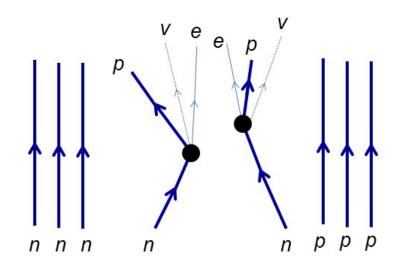
Effect of the many-particle many-hole correlations is included only perturbatively. <u>The importance of this</u> <u>effect depend on nucleus</u>.

My short-term goal To find the candidate nuclei with the minimum disadvantage of QRPA.

Currently ¹³⁶Xe is one of the best candidates.

Reserved

Nuclear matrix element of 2vββ decay



This matrix element includes

$$\frac{1}{E_j - (E_i + E_f)/2}$$

 E_j : energy of intermediate states, which are virtual state E_f : final-state energy, E_i : initial-state energy

QRPA has two sets of intermediate-state energies. One is obtained from the initial state. Another is obtained from the final state.

If the two energy sets give close NMEs, the approximation is good. J.T. PRC **100**, 034325 (2019)