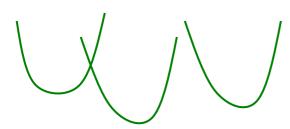
Activities of Matsuo's group

String Theory


Grand unification with gravity

- Compactification to four dimensions is needed
- Why specific compactification that reduces Standard model is selected?
- Nonperturbative off-shell formulation is needed

Quantization of general relativity

A framework that generalize Riemannian geometry is needed A framework that generalize Riemannian geometry

Landscape of vacua

Modular invariance

Geometry should include full massive modes

A First step toward stringy geometry

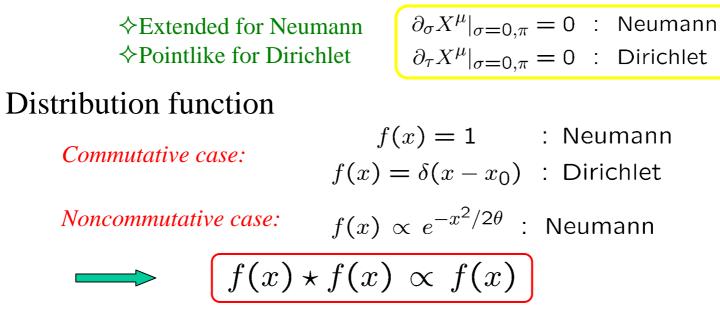
➢ Inclusion of Kalb-Ramond Field B_{µν}
 ➢ Appearance of Moyal Plane

$$[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu}$$
• \longrightarrow

Noncommutative geometry

Not so well-understood compared with Riemann geometry
 Topological charge = D-brane number
 Relation with K-theory in Mathematics
 D-brane on noncommutative torus

Generalization of instanton number (= *Chern class*)


Topological charges in operator theory

(Matsuo)

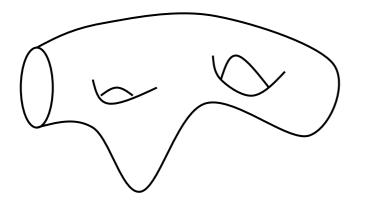
$$\int F^n \Leftrightarrow \operatorname{Tr} \pi (d\pi)^{2n}$$
$$\pi^2 = \pi \quad : \text{projection operator that represents D-brane}$$

Why D-brane is represented as projector?

D-brane defines boundary condition for open string

Noncommutative torus (with T. Takayanagi, M. Kajiura, I. Bars)

 $\theta = p/q \longrightarrow$ reduces to matrix model $\theta =$ irrational \longrightarrow enjoys T-duality: nontrivial


♦Nontrivial topological classes
♦Zero mode knows stringy T-duality symmetry

Noncommutative p-brane

(with Y. Shibusa)

$$S \propto \int \epsilon_{\mu_1 \cdots \mu_{p+2}} X^{\mu_1} dX^{\mu_2} \wedge \cdots \wedge dX^{\mu_{p+2}}$$

Generalization of topological open membrane
 Poisson bracket generates volume preserving diffeomorphism
 Natural realization of Nambu bracket

Noncommutativity at the boundary appears whenever antisymmetric tensor field is nonvanishing

Limitation of noncommutativity

Although it captures some feature of string theory.. It has obvious drawbacks

♦ Only zero mode is present
♦ Modular invariance does not exist
♦ Difficult to cancel infinities and anomalies

However, these are essential features of string theory!

In order to go beyond toy models, we have to include all the string massive modes into the geometry

Star product of open string field theory

$$\frac{\Psi_1 \star \Psi_2}{\Psi_1 \| \Psi_2}$$

 \star noncommutative and associative product

String field theory

So far, unique nonperturbative formulation with all the string massive mode

$$S = \frac{1}{2} \int \Psi * Q\Psi + \frac{g}{3} \int \Psi * \Psi * \Psi$$

$$V(\Psi) \qquad \qquad \Psi = 0 : \text{ Perturbative vacuum}$$

$$\Psi = \Psi_0 : \text{ No D-brane}$$

$$SFT \ can \ describe \ creation/annihilation \ of D-branes$$

Moyal string field theory (with I. Bars and I. Kishimoto)

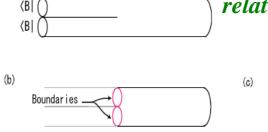
 \Leftrightarrow Explicit mapping from Witten's star to Moyal's star *♦ Solved a subtlety at the midpoint finite N approximation ♦ Simplification of the computation: No needs to use Neumann coefficients*

 \diamond *Many explicit calculation*

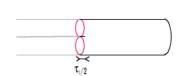
Off-shell amplitudes

Tachyon vacuum

Projector equation with all massive modes (with I. Kishimoto and E. Watanabe) $|B\rangle \star_c |B\rangle \propto |B\rangle$


- \star_{c} Star product for closed strings
- $B\rangle$ Boundary states (realization of boundary condition in closed string sector)

Modular dual description of the projector equation It characterizes the D-brane remarkably although it is so simple


(a)

Every boundary states satisfies this equation
Only boundary states satisfy this equation

A simple geometrical picture

Equivalent to Factorization relation in CFT!

Discussion

Original goal: Find an SFT with geometrical principle Derive D-brane as their soliton solution

Where are we?

Noncommutative Geometry

Open string field theory

T-duality can be derived *No massive mode included* Explicit formula for off-shell formula *Analytic solution for vacuum is not yet found*

Closed string projector equation

Satisfactory to characterize D-brane *No geometrical/gauge principle*