2018 FEEZH FOEFw I CEO) LAR—Kr2 (5/7H&E)
2018 S-semester, QFT I (Hamaguchi), homework problems 2 (May 7)

4 I
o HEL :

&8 [a], [b] D#ELD: M, M43 2O 2 MO AR 17:00.
(B 21X 4/23 DEEFZO LK — M THNIE5/7, 17:00 H3Hit].)
BIRE [c], [d] O#ELD: 2018 4E 7 H 30 H (H) 17:00.

o FRINE :
WERBOs (BRZEER 1 586 208 5%8) LAR— MRy 2 X
F 721F email T hamaguchi@phys.s.u-tokyo.ac.jp £ T
(email DEEIX, 3 HIAPIZ ZAEIER DIBRAE 2370 1 ML EEERE N EW,)

o SHIFHAFENEETBHVWLET, LA—MIEHEEL (ROBTFH]). K&, 2EES4HRTE,
o LE—IMIBIEZKIAHVETH, 2ETCERETHIMEEIHY £HA,
o FNAE (18, B, o, Rul) &, VAR—MTIML. U FOFRMEER L M) ARk LET, @

(# of [a]) + (# of [b]) + (# of [c]) x 5+ (# of [d]) x 10 > 10.

o LAR— MIEAWITEHLZWDT, BERSONITEHATIE—%2 L > TEVTRIW,

o W& DS : hamaguchi@phys.s.u-tokyo.ac.jp

e Deadline :

Deadline for Problems [a], [b]: Every Monday 17:00, two weeks after the corresponding lecture.

(For example, for the problems given in the lecture on April 23, the deadline is May 7, 17:00.)
Deadline for Problems [c], [d]: 2018 July 30 (Mon.) 17:00.

e Submission:
Report Box at the Physics Academic Affairs Office (Faculty of science bldg. 1, room 208)
or email: hamaguchi@phys.s.u-tokyo.ac.jp
(If you submit via an email and do not receive a confirmation email within three days, please contact me

again.)

e Write the reports in English or Japanese. Write the course name (QFT I), your name, and you

student ID at the beginning of your report.

e There are many homework problems, but you do not have to work on all of them.

e Grades (A=excellent, B=good, C=0K, F=Fail) are given based on these homework problems. You will
pass (A, B, or C) if @

(# of [a]) + (# of [b]) + (7 of [c]) x 5+ (# of [d]) x 10 = 10.

e Basically reports are not returned. Keep a copy for yourself, if necessary.

e Contact: hamaguchi@phys.s.u-tokyo.ac.jp

\_ J

@ Z D ARIFIER X ADED~ 1% L % U7z, This homework format is taken from Watari-san’s lectures. http://member.ipmu.jp/taizan.watari/lectures.html




LR— MBI SADYETH. ETC2RETIVEEIDHY FHA.
SEXMPHNITERLR T B &, BARZEIHATIERL, BODEETEEHD I &,
There are many homework problems, but you do not have to work on all of them.

Write the references, if any. Summarize the report in your own words, not just extracting/excerpting

from references.

E=E [a],[b] / Problems [a],[b]

e L R—HF1%2M, See homework problems 1.

http://www-hep.phys.s.u-tokyo.ac.jp/ hama/lectures/lecture_files/QFT_2018_reportl.pdf

E=8 [c] / Problems [c]

[c-1] EH Fermion 35 D& BHWE A F D Lorentz 28 #1 % 3K &,

[c-1] Compute the Lorentz transformations of the creation and annihilation operators for a free Fermionic field.
[c-2] Fermion % ® LSZ formula % &1F,

[c-2] Derive the LSZ formula for Fermionic fields.

[c-3] BTFHATHEITHREIMNIT O WTHIAE &L,

[c-3] Explain the Path Integral in Quantum Mechanics.

[c-4] UTFDESIZ2DDEANT—H o & xDORDEITIVITVEEZERD,

1 1 1 1 f
—_ woao 2 42 - Mn, o022 ) 2
L 5 L POH 2M¢ +28HX{“) X me 2(;5)(.

72720 FIRIEOEHRTH Y, BERT1 2> =iEEEHTH 5,
(i) MHEAEHAEZRY ¢r(x) & xr(x) ZEFK L. Heisenberg %5 ¢(z), x(z) & DEWZFHAE X,
(i) ¢(z) % ¢r(x) BEO Hi(t) = /d?’xgm(t,x)xl(t,xf ERAWTERYE, £2Z08E% f O 1RETREBYE X,
(iii) BAR. 24K8KEL ox — oy 2F XA 72\, £ 7 Heisenberg 45D 4 fiAHBIBIEL (O\T<¢(x1)x($2)¢(x3)x(x4)) |0)
% ¢r(z). xr(z) BECERED Hi(t) ZHWTERYE,
(iv) (iii) OFERZMESTH f CRET AL 2F 25, f O 0 ROEFHILIZFSET. f O 1IROEF R,

2 4 4 3
fD2RDIEIXZL T ADHDBD, %@5%‘&5{%6:%’53‘6@&11>—<3 , 1>—<2 D2OD

connected diagram (ZHHY T BHZITTH L, ZN6DHFLHIZDWTLARFD Feynman propagator % FW T
%‘@O
Dp(z —y;m) = /

(v) (iv) DFERIZ LSZ reduction formula %@ H U T 2 KEEL ox — ox D SATH (p(p3)x (pa); out|d(p1)x(p2); in)
B £ O M (6(p1)x(p2) = 6(ps)x(pa)) ERD &,

(vi) (v) DFERZHWT, EORTORELETER o(dox — ox) ZRdD X,

d*p i
(2m)% p%2 —m?2 4 ie

d*p i

e~ (z—y)
(2m)4 p? — M2 + ie

e" ) - Dp(x —y; M) :/

[c-4] Consider the following Lagrangian with two real scalar fields ¢ and ¥,

f

1 1 1 1
L= 50u00"¢ — SM?¢? + S0, x0"x — gm’X* = 5

2 2

where f is a real positive coupling constants with mass dimension one.

ox>,



(i) Define the interaction picture fields ¢;(x) and xs(z), and explain the difference from the Heisenberg field
o(x) and x(2).

(ii) Express ¢(x) in terms of ¢;(z) and H(t) = /d?’xfdn(t x)x1(t,x)%. And expand it in powers of f, up to
order f.

(iii) Let us consider the 2-body scattering ¢x — ¢x. First, express the four-point correlation function among
Heisenberg fields, <0|T(¢($1)X(.’L’2)¢($3)X($4)) |0) in terms of ¢;(x), x7(z) and the above Hy(t).

(iv) Let us expand the result of (iii) in powers of f. The O(f°) term does not contribute, and the O(f!) term

vamshes There are many O(f?) terms, but only those terms corresponding to the two connected diagrams,

> < > < , contribute to the scattering. Express these contributions in terms of

the following Feynman propagators.

d'p i ip (o d*p i e
DF(:E_y;m):/(27T)4p2—m2+i66 p-( y), DF(x_y;M):/(27T)4p2—M2+iee p(z—y)

(v) Apply the LSZ reduction formula to the result of (iv), and compute the S-matrix (¢(ps)x(p4); out|d(p1)x(p2); in)
and the scattering amplitude M ((b(pl)x(pg) — ¢(p3)x(p4)>.

(vi) Compute the scattering cross section o(¢pxy — ¢x) in the center-of-mass frame, by using the result of (v).
[c-5] [c-4] DT T TV IT VT ¢ DAELET (¢ — xx) & f OBRAKIRTRD &K, 272U M >2m TH B LT 5,

[c-5] For the Lagrangian in [c-4], compute the decay rate of ¢, ['(¢p — xx), at the leading order in f. Here, we assume
that M > 2m.

[c-6] (F—F—DEE) GAONZTT TV IT VD DGOMNEHIZN LT (2MAEHEZRNT) AETHD LT 5,
ZDEE, (i) 2—X—AL b PRERERT, (i) EHARERDO FTo,5" =0 %27 L, (i) F—X—F ¥ —
Y Q= [Pz BHFT B (dQ/dt = 0) T & ZRE,

[c-6] (Noether’s theorem) Suppose that a given Lagrangian is invariant under a certain infinitesimal transformation

of fields (up to a total derivative). Show that, in such a case, (i) a Noether current j# can be constructed, (ii)
it satisfies 9,j* = 0 under the equation of motion, (iii), and the Noether charge @ = [d3z;° is conserved

(dQ/dt = 0).
[oﬂ(ﬁ?ytpﬁWE)£Xﬁ5—%@5ﬁ5y97y£:%ﬁaw¢—%m%?—§x&%%zéo
(i) 7EF S = [d*aL DA ¢(x) — ¢(2') = d(z + a) B LU Lorentz Z#i ¢(x) — ¢(a) = (A7 z) 1T L
TRETHD Z L ERE
(m()@ﬁﬁ%KﬁTé%~ﬁ~ﬁvyb&0%~ﬁ~%¥~yéﬁmb LOEE HFEAEHNTF vy —TD
R EHERE L, (F—R—Fr—VEEHTI0EDZET, TDIEDO—DEFENINV =TV P =H I
wmhET,)

(iii) SO FNLIZMMBEREZHWT, (i) TROEF ¥ —V L ¢(x) DMK FIZIEX [P, ¢(z)) KD &K, (Z
NSDF ¥ —VEHATHRIGT 2EMOER T L R> TS Z & 2MERTL,)

(iv) (i) TRD=F ¥ — Y OMORHEREZ KD, ZNOVHALTWS (Fyr—Y L5 LORBBAROLGLNF v —
VOMEAEATEIT D) BRt,

1 1
[c-7] (Poincaré symmetry) Consider a Lagrangian of a real scalar field, £ = 3 POV P — §m2¢2 — ﬂ)\&.

(i) Show that the action S = [d*zL is invariant under the space-time translation ¢(z) = ¢(2') = ¢(z + a) as
well as the Lorentz transformation ¢(z) — ¢(z') = ¢(A~1z).



(ii) Construct the Noether currents and the Noether charges corresponding to the symmetries in (i), and show
that the charges are conserved under the equation of motion. (There are 10 Noether charges. One of them
is the Hamiltonian P° = H.)

(iii) Compute the commutation relations between the charges obtained in (ii) and ¢(z) (for instance, [P%, ¢(x)]),
by using the equal-time commutation relation of the field. (Check that the charge operators are the

generators of the corresponding transformations.)

(iv) Compute the commutation relations among the charges obtained in (ii), and show that they are closed (the
right-hand sides of the commutation relations between the charges can be written as linear combinations

of the charges.)

[c-8] MILEE m 2¥f>72 NMHOEREAN T =G5 oi8d7 77097 v
N N N 2
L= Zaudh‘@“@ﬁ —WZZ |l = A <Z|¢z‘|2> EEAD,
i=1 i=1 i1

(i) Z ORI SU(N) NFMEEZK > T\Wa Z & 2mt,

(i) (i) OHFREICRTE22 =R —=H VLY P ROEF =R —F ¥ —VEER L, HOEHHRERNEZHAVTFYy—Y0
R 2 TR &

(iil) BORIEZIZEERE VT, (i) TROEF ¥ =V o(z) OLHBERERD &, (ZNS5DF v — VAT
DN AEMDER T LR > TS I L 2fERE X,)

(iv) (i) TRO~=F ¥ — Y OB O LG E KD, SU(N) D Lie REE F U LHBARIZIR > TWD Z & ERE,

[c-8] Consider a Lagrangian with N complex scalar fields with the same mass m,
2
N N N
L= 0,0:0"07 —m2 > [¢il* — A (Z |¢i|2> :
i=1 i=1 i=1

(i) Show that this model has an SU(N) symmetry.

(ii) Construct the Noether currents and the Noether charges corresponding to the symmetries in (i), and show

that the charges are conserved under the equation of motion.

(iii) Compute the commutation relations between the charges obtained in (ii) and ¢(z), by using the equal-time
commutation relation of the field. (Check that the charge operators are the generators of the corresponding

transformations.)
(iv) Compute the commutation relations among the charges obtained in (ii), and show that they are the same

as those in the SU(N) Lie algebra.

[c-9] BNWLT 7T 007 v Dfle —2%1F, GOBNMERMEERL., 7770 Y7 H (MnHZRWT) BY
MEBIZH U TAETH S Z L 2mt,

[c-9] Give an example of supersymmetric Lagrangian, define supersymmetric transformations of the fields, and show

that the Lagrangian is invariant under the supersymmetric transformations (up to a total derivative).

E=E [d] / Problems [d]

[d-1] HORETEIZH T EREEMDIZDOVWT AN T —GOGEZHIIHP L., EETIT > EE R (FHELI/ERE®
Wick DEHZ AW Tk LFEUKEPFONDG Z L ent,

[d-1] Explain the Path Integral in Quantum Field Theory in the case of scalar field, and show that it will lead to the
same result as the operator formalism used in the lecture (the formalism which uses the interaction picture field,
the Wick’s theorem, etc).



[d-2] HH Dirac 55D 777 vV TV L=9(ivl0, —m)p 2EZ b, TDTFTITVIT UBHERTH S Z LIZHERML
T. Dirac 7> Z#H\\WT, Dirac Gz mFbE &,

[d-2] Consider the Lagrangian of the free Dirac field, £ = 9 (iy#d, — m)i. Quantize the Dirac field, paying attention

to the fact that it is a constrained system, and using the Dirac brackets.

[d-3] 7 —YHORE I DOVWTHIHE &, (HETEATHLREMAFATE (ZOHWATH) RWTT, Abelian T
% non-Abelian TH B\ T, )

[d-3] Explain the quantization of the gauge field. (It can be either in the operator formalism or in the path integral
formalism (or both). It can be either for Abelian or non-Abelian gauge theory.)

[d-4] (3Rt

(i) [c-7] Zf# 1T,

(ii) [T DI T IV IT LBV THENED (m=0) THEHEEEAD, TOLE FH S = [dal H
A — )V (dilatation) ¢(x) — ¢/ (z) = e“P(e®z) ITH U TEAZETH S Z & 2R, (o 1FEH)

(iii) (ii) ORFFEICHTE2 R =X —HL Y P ROA—R—F ¥ —V2EE L. F v — Y ORFEHERE X,

(iv) (ili) TRD7=F ¥ =V &, [¢-7] TRDZF ¥ — Y L DO R HERE KD K.

(v) (iv) DRHBMRIFBAL 20, EiZ [T DI TITvITUiEm=00D, &, K7 VI UNFEE 27— V2 #
REMFZF TR, S OITRWNFMEZE D (BRFRE), 1) WENEDG 0L E2EH E | 2) fFHBAZ
THDIeEMRAL, 3) F— X =LV N EME L TZOMRIFEMERL., 4) F¥—VHEHET L ¢(x) DR
BIRZEIE L TEMDER IR o TWA I e 2R L, 5) F vy —VHE TORBBARIPHLTWE I L %
~E,

[d-4] (conformal symmetry)

(i) Solve [c-7].

ii) Consider the massless case (m = 0) for the Lagrangian. In this case, show that the action S = [d*zL is
(i) grang ,

also invariant under the scale transformation (dilatation) ¢(x) — ¢'(z) = e*d(e*x). (« is a real number.)

(iii) Construct the Noether current and the Noether charge corresponding to the symmetry in (i), and show

that the charge is conserved.
(iv) Compute the commutation relations between the charges obtained in (iii) and the charges obtained in [c-7].

(v) The set of commutation relations in (iv) is not closed. In fact, the Lagrangian in [c-7] with m = 0 has
not only the Poincaré symmetry and the dilatation invariance, but a larger set of symmetries (conformal
symmetry). 1) Write down the field transformations of the conformal symmetry, 2) show that the action
is invariant under those transformations, 3) construct the Noether currents and check their conservation,
4) compute the commutation relations between the charge operators and ¢(z), and check that they are the
generators of the transformations, 5) and show that the set of commutation relations among the charge

operators is closed.
[d-5] ETOREMKE—AY M2 1 V—TTiEEL, (QEDD7 74 <V —VIEBEAME UTHWTRWY,)

[d-5] Compute the anomalous magnetic moment of the electron at the 1-loop level. (You can use the Feynman rules
of the QED.)



