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§ 1

Introduction

about this lecture

(i)

(i)

(iv)

(v)

Language

(As arule of the department, for the graduate course, if there are international students
who prefer English, the lecture should be given in English. I'm happy to do so. On the
other hand, for the undergraduate course, the lectures are usually given in Japanese.
Now, this is a common lecture for both students, and there is no clear rule. ...

Speaking
Which one do you prefer? Bl J ... (*) We choose this option. )
Writing | E (*)
] _

(If you find some wrong or unnatural English in the note, please tell me!)

Web page
Google: Koichi Hamaguchi — Lectures — Quantum Field Theory I
» All the announcements will also be given in this web page.
» The lecture note will also be uploaded and updated every week.
Schedule
April 9, 16, 23,
May 7, 14, 21, 28,
June 4, 11, 18, 25,
July 2, 9, 23.
(I don’t check the attendance. You don’t have to attend the classes if you can learn by
yourself and submit the homework problems.)

Grades
based on the scores of homework problems. Details will be announced later.

Textbooks
This course is not based on a specific textbook, but I often refer to the following
textbooks during preparing the lecture note.

» M. Srednicki, Quantum Field Theory.

» M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory.
» S. Weinberg, The Quantum Theory of Fields volume I.

» M. D. Schwartz, Quantum Field Theory and the Standard Model.

> [F—=VG 085 1 JUBRIK—EB. B EdH.

> G081l Borih, 2ERE.



(vi) Prerequisites for this lecture (FI2X15%)
Basics of Quantum Mechanics and Special Relativity.

(You should be familiar with the following equations (taken from Srednicki [1]).

a'ln) =vn+1|n+1),
Jiljym) =G +1) —m(m+1)|[jm+1),
A(t) _ ethAe_th,

E? = p* + m*c?

§1.1 Course objectives

To learn the basics of Quantum Field Theory (QFT).

One of the goals is to understand how to calculate the transition probabilities (such as
the cross section and the decay rate) in QFT. (— §5.)

Examples

» at colliers
et pt ¥
Higgs

e~ 1t v

» in the early universe
DM q

DM q

(In this lecture: only the scalar interaction.)

§1.2 Quantum mechanics and quantum field theory

Quantum Field Theory (QFT) is just Quantum Mechanics (QM) applied to fields.
> QM:  q(t) i=1,2,--- discrete

> QFT: o(7,t) Z- -+ continous (infinite number of degrees of freedom)
(Note: uncountably infinite, A& )



QM QFT

operators 4qi (t)7pz <t> or di (t)a QZ (t) ¢(fa t)? W(f, t) or ¢(f7 t)? (b(fa t)
(Heisenberg picture) | i = 1,2,--- discrete Z--- continous
states (e.g., Harmonic Oscillator)
|0): ground state |0): ground state
aT‘O>7aTaT|O>7"' a;]0>,a;a;,]0>,
a' written in terms of ¢ and p a; written in terms of ¢ and 7
observables
(expectation value) | (:|p]-), (-|H]),--- (1ol G, -
transition
probability P(i— f) = [{f1§)[” P(i— f) = [{f[i)]”

In this lecture, we focus on the relativistic QFT.
(QFT can also be applied to non-relativistic system: condensed matter, bound state,. . .)

Relativistic QFT is based on QM and SR (special relativity).

» QM: i # 0 (important at small scale)
» SR: ¢ < oo (important at large velocity)

» QFT: A # 0 and ¢ < o©
(physics at small scale & large velocity: Particle Physics, Early Universe,. .. )

§1.3 Notation and convention

» We will use the natural units
h=c=1,
where

h~1.055x 1073 kg - m? - sec !,
c=2.998 x 108 m - sec™ .

For instance, we write

— E? = p? + m? instead of E? = p?c® + m2c*, and

— [z, p] = i instead of [z, p|] = iA.



» We will use the following metric.

(The sign convention depends on the textbook. g, (here) = gy ek = —ghrednickd)

o = (20, 21, 2%, 2®) = (1, %)

2y = (20,21, 9, 23) = g’ = (t, —7)

P =00 p%) = (E.D)

Pu = Gup’ = (E,—p)

p-a=pur’ =pey,

= p°2° — plat — pPa? — pPad
=% —p. 7
—Bt—j-1

If p# is the 4-momentum of a particle with mass m,

P’ =p"p, = (°) — [p]* = E* — |pI?
2

=m-.
§1.4 Various fields
spin equation of motion for free fields
scalar field o(x 0 (@O+m?)p=0 Klein-Gordon eq.
fermionic field ¢, (x) | 1/2  (iv*0, —m)yp =0 Dirac eq.
gauge field Ax)| 1  0"F, =0 (part of) Maxwell eq.
(vector) (F =0,A,—0,A,)

We start from the scalar field.

The Standard Model of Particle Physics is also written in terms of QFT:
e quarks (u,d, s,c, b, t) and leptons (e, u, 7, 14;). . . fermionic fields

e v (photon), W%, Z (weak bosons), g (gluon) ...gauge (vector) fields

e H (Higgs) ...scalar field



§1.5 Plan

spin Free Interaction renormalization,. . .

scalar 0 §2 D @ §5
N Lo

fermion 1/2 §4 (2 / / (A-semester ?)

gauge 1
(Last year: @D — @) — @) )

§1 Introduction

§2 Free Scalar (spin 0) Field

§3 Lorentz transformation, Lorentz group and its representations
§4 Free Fermionic (spin 1/2) Field

§5 Interacting Scalar Field

§1.6 Hilbert space and Hamiltonian of (infinitely) many particles

» Consider a scalar particle with mass m.

/

momentum p’

energy Ez = /p? +m?

» Define a one-particle state with momentum p.

which is an eigenstate of the Hamiltonian,
H |p) = Ez|p) = /|pI* + m?|p) .
» We want a Hilbert space containing (infinitely) many one-particle states,

{lﬁl>7 |ﬁ2>7 ‘ﬁ3>7 }
Hlpi) = Ei|pi),  Ei=Ip|* +m2



» We also want the Hilbert space to contain two particle states,

{‘ﬁlaﬁ?)) ’ﬁ37ﬁ4>7 te }

/\ // ......

H{55) = (B + E) 5o 7))
- ( P+ \/|@|2+m2) 707

» and 3-particle, 4-particle,. .. n-particle states.

{’]jiapfjaﬁk>7 |ﬁ17"'ﬁn>7 }
H|ﬁ1>ﬁn> = (El +"'+EN) |ﬁ17ﬁn>

— —
/\:::

» We want all these states in the same Hilbert space,

|P1) E,

D1, D2) E) + By

|ﬁ17 o ﬁn>

2.

"B,

2

(With interactions, the off-diagonal elements become non-zero, and the transition be-

tween these states can occur, such as particle scattering and particle decay.)

» The Hilbert space and the Hamiltonian in eq.(*) can be expressed in a much simpler




way, by creation and annihilation operators as

1) o af|0)

|p1, Pa) o a aq |0},

Py, - o:d;-uagjo%
H=

where a;; and az are the annihilation and creation operators, respectively, and

laz, g] = aﬂg atap (27r)35 (p - q),
lag, ag] = 0,
[CL;;», a:rj’] =0,

|0) :vacuum state, az|0) = 0.

» Let’s check it. (— next week).
on April 9, up to here.

Questions after the lecture:

Q: What is the (3) of 6@ (5~ ¢q) ?
A: It means 6@ (7 — §) = 6(p1 — q1)d(p2 — q2)6(p3 — q3).

on April 16, from here.

(First of all, T am sorry that last week I misunderstood the time of the class. I thought
it is from 10:30 to 12:15, but it should be 10:25 to 12:10.)

Where were we?

§ 1.6 Hilbert space and Hamiltonian of many particle states.

|p1) E,

D1, Da) Ey+ E,

|ﬁl>" ﬁn) Z? En




can be expressed as

where

Let’s check it.

= Epa;
Hal,= al(E, + H)
Tt T _ 1 T T
H <aﬁlaﬁ2 aﬁn) |0> o aﬁl(El + H>aif2 T ay ‘O>

—0

» So, the states and the Hamiltonian in (x) are expressed in a simple way

T T
D1, - - ocaﬁ ---aﬁn 0),

We will see that they are nothing but the states and Hamiltonian of the free scalar
QFT. —§2



» By the way, we have seen a similar expression in QM !
1
H = hw 5 +a'a

i.e., the harmonic oscillator (FAFIHRE] 1) !

§1.6.1 Harmonic Oscillator and QFT

» Let’s recall the QM of harmonic oscillator. We can start from a Lagrangian

Lg.) = gmi® — ymee?,
where ¢ = dg/dt. The conjugate momentum and the Hamiltonian are given by
dL :
p= d_q = mq,
H(q,p) =pq—L
= %ﬁ + %mw2q2.

Promoting ¢ and p to operators ¢ and p, the canonical quantization is

G, p] = ih.
Equivalently, we can express ¢, p and H in terms of the creation and annihilation
operators
. mw [ . L T
a=\]— —
on \ 1Tt
ot mw [ . T
al = /222 (-
2h q mwp
Then,
. 1 1
H= 2 524 Zmus?
om? T3
— hwlata+ =
(a a—+ 2) ,
and

[4,p] = ih — [a,a'] = 1.

The ground state and the excited states are given by
- 1
ground state :  0), al0) =0, HI0)= 575/,«) |0),

~ 1
excited states :  |n) oc (@) [0), H|n) = (n + 5) fuw [n) .

9



» [f there are many harmonic oscillators, then

L= Z(mqu__mw%)’

dL )
i = = — Mg,
g di; q

i, pj] = 1hds; <= |as, d}] = 0ij,

~ m;w; . 7 R
where a; = 5 g; + mpz ,
v

H:Zpi%—L,

2 z I, 1 2.2

H = Z (%pl + Emiwi qi)
—MZ(@@Z )

ground state :  [0), a;|0) =

excited states : |ng,ng, ) (ai)"1 (ah)m--- |0y,

. 1
H’nl,n2’...> :Z ('I’I,Z—i—i) FLW

7

» In §2, we will see that free scalar QFT is essentially a QM of infinitely many harmonic
oscillators. One important difference is that, in the QM of a harmonic oscillator,

(a”)™|0)

represents a n-th excited state (of a single particle). In the QFT,

(af)"10)

represents a n-particle state. In general, n-particle states are represented by

1B, ) OcayTal"'“sz‘n 0) .

§1.7 About homework problems (and the grade)

See the following link:
http://www-hep.phys.s.u-tokyo.ac.jp/ "hama/lectures/lecture_files/QFT_2018_reportl.pdf

10



§2 Free Scalar (spin 0) Field

We consider a real scalar field ¢(x).
» real: ¢(z)" = ¢(x) (Hermitian operator).

» scalar: Lorentz transformation of the field is given by (— see §3)
¢(z) = ¢ (z) = p(A7'x).

§2.1 Lagrangian and Canonical Quantization of Real Scalar Field

In quantum mechanics, we consider a Lagrangian

L=1L(4gq9 =4

In QFT, we also start from a Lagrangian

L= [ £, o)

~
Lagrangian density

In the case of free scalar theory, it is given by

L= Ly = / & LG, 1), 6(7, 1)
- / B (%auqsaw— %m%?)
e -t 2

where

o 2 2
Op0"$ = " 0u0u) = (893 ) Z(W ) =" = Vo Vo

=1

If we regard 7 as just a label,

-

N
7

O
=
o
—
=)
jsp)
=
—+
@
=
=
=
o
D
=
o
=
o,
D

09
=
@D
(€
0
@)
—
=
@
D
Q.
@)
=
=

L= Z( ox(1)* + )

Qb
-
N}

11



conjugate
oL . oL
momentum | p; = — (Z,t) = — = ¢(Z,t) (functional derivative)
94; 56(T, 1)
Hamiltonian | H = ZplqZ H:/de (’N(f, t)qb(.f, t) —L')
1 1 1
_ | B 2 L 2 1 2 L o2.2
—/d:rw 27T+2(V¢)—|—2mqb
1 1
:/d?’x §7r + = (w) 3 2¢2)

| Canonical Quantization: Equal Time Commutatlon Relation |
gi(t), p; ()] = idy; | [[6(Z, 1), m(7,1)] = i6® (T - )

(1), ¢;(t)] =0 [6(Z,), (¥, )] =0
[pi(t),p;()] =0 [n(@,t), 7(§,1)] =
I

equal t

[
[

Hi

Comments

(i) The action

= /dtL = /dtd%ﬁ = /d4x£

is Lorentz invariant. — We will see it in § 3.

(ii) Schrodinger representation and Heisenberg representation:

In QFT, usually the Heisenberg representation is used.

state operator
S-rep. | |U(t))g Os
time-dependent time-independent
H-rep. | V), Op(t)
time-independent time-dependent

S-rep.

d
Yt (W(t)s = H(p,q) [¥(t))s
[U(1))g = e W(to)) g
Expectation value of an operator: (¥ (t)|Os|V(t))s

12



H-rep.

[Ty = [U(t))g = e [W(2)) 5
OH(t) = eiH(t—to)Ose—iH(t—to)
Expectation value: a(VOgt)|¥)g == s(VU()|Os|¥(t))s

ZiOH (t) — _He’iH(t—to) Ose—iH(t—to) _|_ eiH(t—to) OSHG—iH(t—to)

dt
=—HOg(t)+Ox(t)H
= [Oy(t), H]. Heisenberg eq.

———— on April 16, up to here. —————
Questions after the lecture:

Q: What is ¢? Does it represent a real particle (in nature)?

A: Well, the scalar field theory here is a kind of a “toy model”, so it does not necessarily

represent a real particle in nature. As mentioned in § 1.4, the (only) elementary scalar
particle known in the Standard Model of particle physics is the Higgs boson. So if
you want, the ¢ field in this section can be regarded as a (free, non-interacting) Higgs
boson. In addition, as composite particles, there are many scalar boson in nature, such
as the pion.
The reason we start from a scalar field is just because it is simple. 1 guess you are
more familiar with other particles such as the electron and the photon (than the Higgs
boson which only particle physicists might care.) However, the electron is a fermion
and the photon is a gauge boson, and in QFT, they are more difficult than the scalar.
Thus, we start from an easier scalar QFT.

Q: In §2.1, you wrote

1. 1
L= —pz(t) 4+ ) ~ —q:()*+ -
Ef (2¢()+ ) E 5 0i(t)” +
What do you mean by that?

A: It’s just an analogy, or a correspondence between QFT and QM. ¢ <> ¢, T <> 1, ...

Q: OK. In QM, ¢;(t) corresponds to a velocity. Does ¢ represent a velocity of a particle
then?

A: No, no, it is just an analogy or correspondence. ¢ has nothing to do with a velocity of
the particle. In that sense, the symbol “~” is misleading. You can just forget about
this equation if it is confusing.

on April 23, from here.
Where were we?
§2.1 Lagrangian and Canonical Quantization of Real Scalar Field
Comments (ii): S-rep. and H-rep.
QFT — usually H-rep.

13



H-rep.

W), =[T(0))g = e T(t))
Ou(t) = eHtOge it
#(VOu)| W) n = = s(U(t)|Os|¥())s
d , , , '
ZEOH (t) _ _HezH(t—to)Ose—zH(t—to) + 61H(t—t0)OSH6_ZH(t_tO)
< [Last Week]

[today] —

=—HOy(t) + Ou(t)H
= [On(t),H]. Heisenberg eq.

§2.2 Equation of Motion (EOM)

» There are two ways to derive the EOM.

(i) From the action principle 65 =6 [ dtL = 0,

oL oL
——— — — =0 Euler-Langrange eq.
"5(0,0) 80 °
(ii) From Heisenberg egs.,
i = (¢, H]
im = [m, H]
. . s, (1 L 5.9 -
» From (i), for the Lagrangian L = [ d°z 5@(}58’% —3Mm ¢ |, we obtain
oL oL
Oy — — = 0,(0"¢) + m?¢p =0
or
EOM |(O+m?) ¢(x) =0
1 o /2
where [0 = 9,0 :w—v :
~ Problem

(b-1) Derive the EOM (O + m?) ¢(z) = 0 from Heisenberg eqs.,
1 1 = 1
by using H = /dgx (§7r2 + §(V¢)2 + §m2¢2)
and the equal-time commutation relations of ¢ and .
(Note: ¢(t,Z) and 7 (t,Z) depend on ¢, but H does not.)

14



§2.3 Solution of the EOM

» Starting from | (O + m?)¢(x) = 0 (Klein-Gordon eq.)
expressed as

, one can show that ¢(z) can be

_ L a 6—ip~z a eip~z

where ¢(x), a(p), a' (p) are operators, p-x = p,a* = p’t—p-Z, and p° = E, = \/p? + m?.
» Eq. (1) is a solution of the EOM, because

(O + m?)er = (9,0" + m?)etre

_ (a_Q _ 62 + mQ) e:I:ip-:v

ot?
= (=E) + " +m’)e™"" = 0.
——
B

» Now let’s show that Eq.(1) is the general solution of the EOM.

(i) Fourier transform (FT) ¢(x) with respect to -

o(x) = 6@, 1) = / P C(F 1) €77 ()
t t
opera or Opera or

(ii) From the condition ¢ = ¢ (real field),
[ #cnen = [ apcig e
— [@wcidneme @ =-p

Using inverse FT,

C(p.t) = CH(-p) (3)

2

(iii) From (04 m?) ¢ = (% —- V4 m2> ¢ =0 and (2),

/ &p | @0 + O (7 +m?) | 67 =0
—_——

B

15



Using inverse FT,
C(p,t) + E2C(p,t) =0
C(p.t) = C(p)e" ™" + C'(p)et™".
From (3), C'(p) = CT(—p), and hence
C(F,1) = C(F)e "Bt + Ot (—f)etiErt,
(iv) Substituting it to (2) (and changing p’— —p'in the 2nd term),
O(Z,1) = /d3p (C(P)eErteiPT 4 O (p)etiErte=iP )

= [ @ (c@e e+ Ciper)

Finally by normalizing as a(p) = (27)*\/2E, - C(p), we obtain (1). B

» Note that the normalization depends on the convention (textbook).

1
V2E,

» From (1), we can express the operators a(p) and a'(p) in terms of ¢(x):

a(here) = a(Peskin) = a(Srednicki) = (27)%2a(Weinberg).

1 3, +ipa |
a(p) = \/21Tp /d Te [ub(x) + E,,(b(a:)} "
0= [ e [<idta) + Byota)]
~ Problem ~

(b-2) Substitute (1) to the right-hand side (RHS) of (4) and show that it gives a(p) &
a(p)".
(b-3) The RHS of (4) seems to depend on z° = ¢, but the LHS does not. Show that

E[RHS of (4)]= 0, using the EOM. (Hint: integration by parts (343 %43))

(b-4) Substitute (4) to the RHS of (1) and show that it gives LHS.
\_ J
Pay attention to which variables are just the integration variable. For instance, let’s solve
(b-2):

from (1), ¢(x) = & (a((j’)e—iqw + aT(q_)e-Hq‘x)
(2m)

)3\/2F,
=[dq]
) / | (Eya(@)e """ — Eyal(§)et™)
¢( )+ Epo(x / ( (Ey+ Ep) cj)e_qu (—E, + Ep)aT((j)e_ip.x)

16



Thus,

RS of (1) = 7 ZNde [1a (B, + Epa@ee7 + (-, + Bl (@)
/d3x€ipr0€—iﬁ.f . e—iquoei@a?

= @0 (- @) I (26 4 q) -
1 d3q

= E,+E 8O (5 — @) + (=B, + E,) al(§)0® (5 — q)e'FrtFa)a
\/m \/Q_Eq ( q P)a((?) (p @ ( q P)a ((j) (p @e

—0

—a(p) =LHS of (4) W

§2.4 Commutation relations of ¢ and af

» From the commutation relation in §2.1, we have the following commutation relations

(recall w(x) = ¢):

[6(Z,1), 67, 1)] = i6®) (& — ) [a(p), a’(q)] = (27)*6®) (7 — q)
[0(7,1), 6(7.1)] = 0 = | [a(p),a(@)] =0 — )
[9(Z,1),0(¥,1)] =0 [a'(p), a"(9)] = 0

Problem

(b-5) Show that RHS of (5) == LHS of (5), using (1).
(b-6) Show that LHS of (5) == RHS of (5), using (4).

§2.5 a' and @ are the creation and annihilation operators.

» In this section we will see that

a(p)
a'(p)

annihilate a particle with energy E,, momentum p.

create a particle with energy F,, momentum p.

H(p)] = E,al
» First, we can show that [H, a"(p)] = Epa'(p)

[H, a(p)] = —Epa(p)

(6) (We will show it later.)

5 T
We can also show UZ a'(p)] = pa'(p)
[P, a(p)] = —pa(p)
where ]:5 is the “momentum” operator. ( / dsergb / 3qa (D)a(d). We

skip the details here. (It can be obtained from Noether’s current for translatlon )

17



» Consider a state with energy Fy and momentum p;
H|X) = Ex|X)
X) { S
P|X) =px |X)
Then, for the state af(p) | X),
H (a'(p) | X)) = (Ha ()] +a'(p)H) |X)

(E a'(p) + o (p)Ex) |X)

A — (B, + Bx) (d(7)1)).

P (af(7)1X)) = ([P.a' ()] + o' ) P) |X)
= (pa’(p) + a' (P)px) |X)
= (7 +px) (') |X)) .

Thus, the state a'(p) |X) has energy E, + Ex and momentum §'+ py, namely,
a'(p) adds energy E, and momentum . (creation operator)

» Similarly, we can show
H (a(p) | X)) = (Ex — E) (a(p) |X)),
P(a(p) |X)) = (Px — p) (a(p) | X))
and therefore a(p) is an annihilation operator.
» Now let’s show (6). There are two ways.

(i) Express H in terms of a and af.

(ii) Use (4) and Heisenberg egs.

Problem
Eb—7) Do (ii): Show (6) by using (4) and Heisenberg egs. j

on April 23, up to here.

Questions after the lecture:

Q: In §2.3, C(p) and C’(p) are independent at the beginning. Where does C’(p) go?

A: Tt is (implicitly) shown in the sentence “From (3), C'(p) = CT(—p).”
If we substitute C(p,t) = C(p)e Ee! + C'(p)e T to eq.(3), then there are terms
proportional to e*£rt and e~Fr! in the both right- and left-hand sides. The
equation should hold for any t. By comparing the coefficients of e**#r! and et
we obtain C'(p) = CT(—p).

Q: In §2.3, when solving (b-2), you used —E, + E, = 0 under §® (5 + §). Is this

because E, = \/¢* + m? and E, = \/p? + m?, and therefore £, = I, for ¢ = —p?

18



A: Yes, you are right.

Q: Discussions around here seem to apply for Analytical Mechanics (fi#fr J1%), if we
replace the commutation relations with the Poission brackets. For instance, the
relation between ¢ and a, a' seem to hold for a classical field as well. From which
point does the quantum mechanics start?

A: Good question, and you just almost answered the question by yourself. The quan-
tization started when we imposed the commutation relations, [¢(t, Z), 7(t, )] =
i03)(# — i) etc, instead of the Poission brackets.

——— on May 7, from here. ——————
Where were we?

§ 2 Free Scalar

§2.5 a = annihilation, a' = creation

[H. a'(p)] = Epa'(p)

We can show P 6) b
1, a(p)] = ~Eya(7) () by
(i) Expressing H in terms of a and af, and

(ii) Using (4) and Heisenberg egs. (— (b-7).)

» Here we do (i). First,

_ d’p —BptHiFE |t (5) i Eet—iPE
)= [ Gy, )

3
_ / # (a(@)e™ B + a (—p)e’®) ¢PF (= —F in the 2nd term)
T

32E,
Let’s define,

. 1 _
A(pit) = —————a(pe Ept

Gr) /25,

and omit ¢ for simplicity: A(p) = A(p,t). Then
o) = [ (A7) + AT () 7
Vo) = [ & (AG) + A'(~5) i)™

[ B (A = Al ) €77 ALY = (<iB)AGD)

-

—

&
I
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Therefore,

H- [ d3( 3(To + gt

X [2( iBy)(—iE,) (A(P) — AT(—p)) (A(@) — AT(-)
%(zﬁ)(@ (A@) + AT (=) (A@) + AT(~=))
Lo (A + A1) (A@ + ')

— /d3q(27r)3Eq2 [A(=D AN (=) + ANDAD]

ﬁ la(@)a’(@) + a'(Da(@)] (§— —¢ in the Ist term)

_ / a2y

Here, note that the t-dependence of A(q,t) cancels in H, and hence H is time inde-
pendent. By using

a(@)a’ (@) = a'(@)a(@) + (2m)*6®(0),

H = / ( (@)al(@) + = < m)? <><o>>

[ k5590

is the zero-point energy. (This corresponds to the %hw term in the energy spectrum of
the harmonic oscillator, £ = hw(a'a + 3).)

we obtain

The constant term,

The zero-point energy cannot be observed (except through the gravitational force), so
we neglect it in the following.

In fact, there is an ordering ambiguity to quantize the theory from a classical
level. If we define the Hamiltonian by

1. 1,2 1
H=: /d3x {§¢2 + §(V¢)2 + §m2¢2 : caa’ :=:a'a: mnormal ordering
then there is no zero-point energy.
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d3
In any case, we have | H = /%chﬁ(cj)a(@ (+ const.)  (+ §1.6)

(2)
Therefore,
i dq o :

[H,a'(p)] = 5 E,a"(7) [a(@), d" (P)]
(27T) N————

(2m)363) (7—p)

= EpaT(ﬁ)
similarly [H,a(p)] = —E,a(p) |
~ Problem ~N

Now that ¢(z) and H are expressed in terms of a and af, we can do some consistency
check, based on (1), (6), and the commutation relations of a and af.

» Heisenberg eq. ip(x) = [o(z), H — (i).
> ¢(r) is a Heisenberg operator:  ¢(z) = ¢(t, ) = 10 g (ty, F)e 1) — (i),
(b-8) Show (i) by using (1) and (6).

(b-9) Show that efa(p)Te 't = a(p)Tefrt and ela(p)e 1t = a(p)e~*Fr! by using (6).

(b-10) Show (ii) by using the result of (b-9) and eq.(1).
N J

§2.6 vacuum state

The operator a(p) decreases the energy:

(X) = a@[X) = a(@a(p)|X)
energy EX EX—Ep Ex—Ep—Eq

The ground state (lowest energy state) |0) is a state which satisfies

a(p)[0) = 0
and Lorentz invariant (— §3)

U(A)]0) =10).

§2.7 One-particle state and n-particle state

» The one-particle state is given by (for free theory)

) = V/2E,al () [0) -
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normalization

(@l5) = 2B,/ 2B, (0]a(@)a! (7)]0)
= V2E,\/2E, 0] ([a(@), o' ()] +a' () a(@) ) 10

(2m)36®) (p-q) —0

= (2m)2E,0% (5~ q)

Why [p) o \/E,a’(p) |0), not just a'(p) |0) ?
— because E,0®) (p' — §) is Lorentz covariant. (— §3)

» n-particle state is given by

Iﬁl, .. -ﬁn> = \/2F; -1 /2EnaT(ﬁ1) .. -aT(ﬁn) |0)

and satisfies

H|p1, - Pn) = (Br+ -+ Ey) D1, D)
P|p1) > (p1+ ﬁn) |ﬁ17ﬁn>

As we promised in §1.6.

§2.8 [¢(x),¢(y)] for a® # "

For 2° = 4% = ¢, we have [¢(z), ¢(y)] = 0. What if 2° # y°7?
From Eq.(1) and the commutation relations of a and a' in §2.4, we have

[6(z), o(y)] = / (265% (e*ip-(xfy) _ e+z‘p-(xfy)) = iA(z —y)

A(?C)Z(—Z)/W(e e — et
Properties of A(x):

(a) (O+m*)A(z) =
(b) Lorentz invariant: A(Ax) = A(z).

(c) Local causality: A(x) =0 for 22 = (2°)? — #2 < 0 (space-like).
t

S
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(a) is clear from the definition of A(z).
(b), (¢) = §3.

Problem

(b-11) Compute [¢(z), d(y)], for not equal time (z° # 3°). (Use an integral, if necessary.)

(b-12) Take 2° = y° in the [¢(z), ¢(y)] obtained in (b-11), and show that it reproduces
the equal-time commutation relation of ¢ and ¢.
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§3 Lorentz transformation, Lorentz group and its rep-
resentations

§3.1 Lorentz transformation of coordinates

— is a linear, homogeneous change of coordinates from z* to xz'*,
ot = A av

where A is a 4 x 4 matrix satisfying

gMVAupAVO' = Gpo uv = -1

— A“pguVAya = Gpo
<= ATgA =g (in matrix notation).

Comments

(i) It preserves inner products of four vectors:

Ty = gur'y’

— ZL'/ . y/ = guy,f,“yly = gMVAMpAVUJ,’pr = gpo'xpya =x-y.

This is similar to orthogonal transformation v — V' = R where R is an orthogonal
matrix satisfying R”R = 1. (e.g., R = ( cosf sin 9) in 2-dim.)

—siné cosf
Inner products are preserved: @ -7 — v/ -v' = (Ru) - (RV) = ¢’ RTRv = - .

.

(ii) The set of all Lorentz transformations (LTs) forms a group (Lorentz group).

> Product of two LTs Ay and Ay is defines as (AgA1)¥, = (A2)¥ (A1)7,.
» closure: if ATgA; = g and AL gAy = g, then (AyA)Tg(AsAy) = g.
> associativity: (AjAg)Az = Aj(AgAs3).
1
» identity: A*, =", =
1

> inverse: (AN = gMg,,A7, = A1

(This satisfies A™'A =1, ie., (A7) AY, =d",.)
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Examples

rotations | around x, y, z axes

1 1 1
AP — 1 cos 65 —sin 6, cosfs; sinfs
v cosf; sinb; |’ 1 ’ —sinfs cosfs
—sinf; cosf, sin 6 cos 0 1
in the z, y, z directions
coshn; sinhn, cosh sinh 7y cosh s sinh n3
AP — sinhn; coshn 1 1
v 1 | sinhne cosh 7o ’ 1
1 1 sinh 73 cosh s
el +e™
coshn=———=v
2
en — 6_77
sinhn = — =py=7?—-1

§ 3.2 infinitesimal Lorentz Transformation and generators of Lorentz
group (in the 4-vector basis)

» Consider an infinitesimal Lorentz Transformation:

AF, =01, + W, (wh, < 1),
or A=T+w.

where I is the identity matrix (/#, = d*,). Then, from ATgA = g,

(I+w)g(I+w)=g
swlg4+gu=0 (up to O(w?))

"W Gou F Gup Wy =0
—— —

[ = Wy
gw’ﬁ” 7
Wyp

Wyp = —Wpw anti-symmetric

0 a b 6 independent degrees
T —a 0 d e 0
nv —b —d 0 f .
3 rotations and 3 boosts

—c —e —f 0
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» In fact, the matrix w”, = g"”w,, can be written as

O m m 3
Note that
m 0 93 —92 0

W= n —63 0 6 W gZOWOV =Wy, Woi =1 = —Wio-
ny Oy —0; 0 W'y = gUwjy = —wiy, —wij = €l = wj;.
on May 7, up to here.
May 14, from here.
Where were we?
§ 3 Lorentz. ..
§3.1x — 2’ = Ax.
6§32 A=I+w

= W = —Wyy

the matrix w*, = g"w,, can be written as

v %1 ZQ _77; Note that
W = Z; —05 Od 912 w9” - g?F)MOV = Woy, Woi = T = —Wip-
ns 0o —0; 0 W'y = gYwjy = —Wi,  —Wwij = €l = Wiie
(today —)

and the rotations and boosts in §3.1 can be expanded as

rotation around z axis

1 1 0
B 1 B 1 0 9
A= cosf, sin6, | 1 + 0 6 + O(07)
—sinf; cosb, 1 -0, 0
boost in the x direction
coshn; sinhm 1 0 m
A~ sinhn; coshn _ 1 L m 0 +O(R)
1 1 0
1 1 0

» The matrix w”, above can also be written as

why, =i [0:(J:)", + ni(K)" )]
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where

0 0 0
0 0 0 —
(1), = Y B CATE R O A
1 0 —1 0 0
0 — 0 —1 0 —1
. — 0 0 0
(K1>l v 0 ) (K2)My = —i 0 ) (K3)sz = 0
0 0 —1 0

These 6 matrices are the generators of the Lorentz group in the 4-vector basis.

» Any group element can be uniquely written as
A = exp (i0;J; + in; K;)
up to some discrete transformations. (cf. §3.A)

(We omit the proof.)
For example, for 6, # 0,60, = 603 =n; =0,

A = exp (i611)

0 0 1
0 1 0 1
= exp 0o 6, z%ﬁ 0 6 N cosf, sinb,
—01 0 " —91 0 —sian COSHl

For 0;,m; < 1,

A = Ly + i (0:J; + i K) +O(0;,m:)?
—_———
w

» The generators J; and K; satisfy the following commutation relations

[Ji, J;] = i€ijidi ( Lie algebra )

5;'7 [ié]]z—zei{iiKkJ of Lorentz group SO(1,3)

In §3.4, we will see the same commutation relations hold for generators of
general representations of Lorentz group.
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§3.A  Other (disconnected) Lorentz transformations

» The above LTs (rotations and boosts) are continuously connected to the identity ele-
ment [ by infinitesimal Lorentz transformations (LTSs).

*— ..
o [ +uw ..\).A:(1+wn>"'(1+w2)(1+w1)]
Ie ]+W1

But there are also LTs which cannot be connected to I by infinitesimal LTs.
» From g, A" A = guo,
(i) detg-(detA)> =detg .. detA =41
(ii) goo = gooA oA 0 + gij A0 g
1= (A%)*— (A%)* . (M%) =1+ (N)*>1.

» Thus, LTs can be classified into 4 disconnected sets;

det A = +1 (“proper ) det A = —1 (“improper”)
A% >1 connected to connected to
1 1
(“orthochronous”) I= L 1 P = -1 1
1 —1
A% < —1 connected to connected to
—1 —1

(“anti-orthochronous”) | PT = -1 1 I= L ]

-1 1

» In the following, we consider only the proper-orthochronous (det A = +1 and A% > 1)
LTs, which are connected to I.

Problem

(b-13) Show that the proper-orthochronous LTs form a subgroup.

§3.3 Lorentz transformation of scalar field

» LT of a field is represented by unitary operators acting on it:*

Dr) = /(o) = A YDA
= U(N) ' ®(2)U(A) ®(z) : generic field, U(A)™' = U(A)!

![Note added on May 22.] The definition in the original version was wrong. I'm sorry! See the “Comments
after the lecture” on May 21 for details. To clarify the corrections, the wrong expressions are struck out in

red.
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» Scalar fields are the fields which transform as

8(z) = o (a) = Lo @)Y

Substituting z = y' = Ay, it means ¢'(y') = ¢(y) (for all y).

§3.3.1 Lorentz transformation of a, af, and one-particle state

U(AN)a(p)U (M)~ =77
UA)a(p) UML)
U(A) \ﬁ) =7

(i) First of all, for any f(p),

/ dap_ £(7) = / dipd(p — m?)0(°) £(7)

1
where 0(x) = { (@ > 0; is the step function.

0 (x<0
Problem
@-14) Show it.

(ii) Therefore
_ &’p
oe) = / (27)3+/2E,

= [ atpsts?  m)0") o (0l + al ()

(a(ﬁ)e_ip'r + aT(ﬁ)ei”'m)

and its 4-momentum FT is given by

k) = [ d'ac o
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(ili) and its LT is

(2m)3(k* —m®)\/2E;

AU (M) a(BYU (A) +e(—k0)U(A)aT(—/§)U(A)—1) .
/ d*ze™ U (N)p(x)U(A) ™

= /d4xe’ ToA—1e} d(Ax)
c(=Ayh=AR =AYy, k=N, k-z=k-y)
(d4:z; = d'y = |det AN dYy = d4y)

[ e vot)
30k )
(2

(K — \/2Ek/< (k) a(k) + 0 k:’o)aT(—lg’)).

Comparing them, and using k> = k% and 8(k"°) = 6(k°), we obtain

U(A)[RHS of (+)]U(A)

X

U(A)[LHS of (x

ox
d
e o

U(A)af = ? (k) (H=A"Yk k' = Ak)
and  UN)a(R)UN)™ :\/g:k L

» LT of a one-particle state is then given by

UA) |p) = U( \/2Ea () 10)

———
=|0)  (§2.6)
EP/ Nt
=/2E, FG(P) 0) (p=A—pp = Ap)
p
— 2Ea(p)' |0)
= |p [

§3.3.2 Let’s check what we have written in § 2.

(§2.1) Let’s show the invariance of the action,
4 . (1 Lo
S=|[|dzL= | dx §8M¢6“¢—§m¢
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under the Lorentz transformation
p(x) = ¢'(x) = (A 'x) = o(y), ¥ = (A7) 2"
The transformation of d,¢ is given by

0(a) = 50 0) = 5L o) = (A7), 0,910

and hence

au¢au¢(x) = gupau¢ap¢(x)
= ¢ (A7), (A7), [0.,0](9) (9,61 (v) = [9,60" ) (y)

g
—alo
=9

s/ d4< 000" 9() - %m%(a:)?)

— / d'z <§3u¢3“¢(y>—%m2¢(y)2)
7d4
=S5S. 1

Thus,

(§2.7) E,0%(p—q)
From §2.7,

E,6® (5= q) = (qp)
= (QU(A)IU(N)|p)
=(dlY) (@ =4A"1pAp)
—E,000 -¢) =

(§2.8) Ax)

(b): A(Az) = A(z) can be shown by using the equation in (i) of §3.3.1:

Problem
E b-15) Show it.

(c): = (0 for 22 < 0 can be shown as follows. First,

A =0, = (i) [ ol (o7 - ) =0
x , X i or72E, e e .

On the other hand, for space-like z (z? = (2V)* — #* < 0), one can always Lorentz

transform it to Az = 2’ = (0,27).
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For a Lorentz boost in the opposite direction to Z, x° is transformed as

(
1 - > T
10 e — 0 — . i - —7T 10 =
= \/1_752(33 p-x). Taking g =T, we have x 0. Note that
this is impossible for a time-like z, where z? = (2°)* — 7% > 0, because
0

—
2

> 1 in that case. )

Therefore, by using (b), we have A(z) = A(Az) = A(0,2') = 0 for 2 < 0.

on May 14, up to here.
Questions after the lecture:

Q: Concerning the LT of fields, shouldn’t it be
() = U(A) T @(2)U(N),

not
o' (z) = UN)D(2)U(A)™ 2

For instance, in the relation between the Shrodinger-rep. and Heisenberg-rep. (Oy =
etOge 1) it seems the latter convention is taken. Furthermore, the latter leads
to U(A) [p) = |Ap), which seems more natural than U(A) |p) = |A~'p) given by the
former one.

— S. :
least-self-eonsistent—withinmyleeturenote-hope: — [Note added on May 22]. No,
it is not self-consistent! It is not a matter of definition, as far as I want to keep the
relation U(A1)U(Ay) = U(A1Ay). T was wrong. You are right! I have corrected the
corresponding parts. See also the “Comments after the lecture” on May 21 for details.

May 21, from here.
Where were we?
§ 3 Lorentz. ..
§3.1 z— 2 = Ax.
6§32 A=1+w.
§3.A...
§3.3 ¢'(z') = ().
(today —)

§3.4 Lorentz transformations of other fields, and representations
of Lorentz group.

§3.4.1 Lorentz transformations of general fields

» In §3.3.2, we have shown that the scalar action

S = / dtL = / d*zL[p(x),0,0(x)]
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is invariant under the LTs of the scalar field,

d(z) = ¢f(x) = o(A" ')
or ¢(z') = o(x).

We'd like to generalize it as

Oy(z) = ®(2) = Dop(N)®y(A'2)| a,b=1,---N
or ¢’ (') = D(AN)P(x) |, ¥ = Ax

» The matrix D(A) (N x N matrix) must be a representation of the Lorentz group.

D(A2A1) = D(AQ)D<A1)

(Proof:) For two successive LTs,
r— 2 — 2"
A As
' (2") = D(A)®(2)
¢"(2") = D(A2)®'(2") = D(A2) D(A1) ()

On the other hand,

ZL‘H = AQIL‘I = AQ(Alx) = (AQAl)ZL’
,',(I)”(.’,U//> = D(AQAI)(I)(.CC)

Thus

D(AsA) = D(A)D(A;) M

» What kind of representations does the Lorentz group have?
(<= What kind of fields (particles) are allowed in relativistic QFT?)

scalar field : D(A) =1 (1 x 1 matrix) ® = ¢ has one component.
spinor field : D(A) =77(— §3.5) (2 x 2 or 4 x 4 matrix) & = ¢ has 2 or 4 components.
vector field : D(A) = A*, (4 X 4 matrix) ® = A, has 4 components.

§3.4.2 Infinitesimal Lorentz transformation and the generators

» Consider an infinitesimal LT
AMV = 6'u1/ + wﬂw

parametrized by 6 small parameters w,, < 1 (or §;,n;, < 1 see §3.2), acting on a
generic field &, (a =1,...N),



For w,, =0, A = I;x4 (no transformation), and
Dup(A) = Dop(I) = dap (N x N matrix)
Thus we can expand D(A) as
D(I +w) = Inxy + %ww,Mﬂ”, M = — M
or Dap(Laxa +w) = 0ap + %Wuv [M*™],,

where the N x N matrices [M*”] , are the 6 generators of Lorentz group in this rep-
resentation.

» The 6 generators M satisfy the commutation relations of Lorentz algebra. Let’s show
it. Consider three successive LT,

D(A3A2A1) = D(A3)D(Ay)D(Ay) (1)
with
Al =1 + w
AQII—FLZ} (ij,ww/<<1
A3 =1 —w
Then,

LHS of (1) = D((I —w)(I +&)(I +w))

=D(I+ & —w? — wi + dw — wow)

=1+ %(@ — w? — W@+ W) agM* 4+ O(@, w?, ww)?
RHS of (1) = D(I —w)D(I +@)D(I + w)

— ([ - %wM + O(w)2> ([ + %QM + (9(@)2> <I + %wM + @(w)2>

Comparing both sides
O(1),0(w), O(w) egs. — trivial (I =1,0=0,M = M)
O(w?), O(@?) egs. — o closed relations.
O(wis) eq. — %(—w@ ) MO = i (WM - M — @M - wM)
(2)

Now, comparing the w,,&,, components in the both sides of (2), we obtain

[MMV7 Mpo} — (gupMW _ ngMW _ g.leVP + gWMup) (3)

Lie algebra of Lorentz group
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Problem
@)-16) Show it. (Note: (0w — ww)as = Wayw g — Way@? ) j

» Defining
D(J;) = —5eupM’* = MY = —¢;3.D(Jy) (4)
D(K;) = M" ’
[D(J:), D(J;)] = i€ D(Jy) The same as
(3) <= | [D(J;), D(K;)] = ie;uD(Ky) |——(5)  thosein §3.2 !
[D(K;), D(K;)] = —ie; D(Jx) (as we promised.)

» Recall that M* <= D(J;), D(K;) are the generators defined by
1

D(Iysq +w) = Inxn + 5

v
Wy MM

which represents infinitesimal rotations and boosts. Using the notation wgy; = 7; and
wij = —€;,0x for the 6 small parameters (see §3.2), the above eq. becomes

D(]4><4 + w) = ]N><N +1 [QZD(JI) + UZD(KZ)]
which is the same form as the infinitesimal LT of coordinates in § 3.2.

» Now, define

(D(J;) +iD(K;))

(D(Ji) = iD(K3))

(Note that D(B;) # D(A;)T, because D(K;)T # D(K;) (see discussion later).)
Then

[D(A;), D(A;j)] = ieijrD(Ay)
(5) <= | [D(B:), D(B;)] = i€ D(Bg) ——(6)
[D(A;), D(B;)] =0

This is the algebra of SU(2)xSU(2), and therefore we can classify the representations
of Lorentz group by using representations of SU(2).

» Before going ahead, let’s summarize the discussion so far:
o LTs of fields: ®'(2') = D(A)®(x) with ' = Ax.

e For infinitesimal LTs, D(A) = D(Iyx4 + w) = Inxy + %WWM’“’

35



e Three equivalent ways of representing the 6 generators:

M* <= D(J;)),D(K;) < D(A;),D(B)
satisfying (3) <= (5) = (6)

e So far, D(A), M* D(J;), D(K;), D(4;), D(B;), are all generic N x N matrices.

§3.4.3 Representation of “A-spin”

» What's the generic representation which satisfy (6) ? Let’s concentrate on D(A;).

[D(A;), D(A;j)] = i€ D(Ag)

We know this from QM !!

Starting from this, we could show that generic representation is

[jm jj} = 1€k Jk-

spin-j state : |7, m)

1 3
i =0.—.1.—.---
J 727 a27
23':-1

where 17 |;,m> J(Jf jm)
J3 ‘.77 m> =m |Jam>
» INOTE| In QM, we have used the fact that j; are Hermitian, jj = J;. Here, D(A;)

and D(B;) are not Hermitian, but we can derive a similar result assuming
a finite dimensional representation. Let’s see this.

» For simplicity, we denote
A; = D(A)) (N x N matrix).
Define
{A2 = A2+ A3+ A3,
AL = A £ iAs.

From (6), we can show

[A%, A3] =0 (i),
(A%, AL] =0 (ii),
[Ag, Ay = £A, (iii),

A2 == A3(A3 + 1) —|— A,AJF
As(A; — 1)+ AL A
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From (i), there exists a simultaneous eigenvector of A and As; @, .

A? Oyl =2 Pap

As Dyl =1 | Pap N
—_——

NxN

Then, from (ii) and (iii), the vector
(I))\,,uil = AiqDA,u

satisfy

A2(I)/\,,ui1 = )\(I)/\,,uil
APy i1 = (B £ 1) Py 1.

Continuing further, the vector @ 1, = (A4 )"®, , satisfy

AQ@)\,uin = )\(I))\,uin
A3(I))\,,uin = (/L + n)q))\,,uin-

Now, assuming finite dimensional representation, there must be upper and lower bounds
on Aj’s eigenvalue

Hmax = [+ Ty,
Hmin = §+ N,

with

A_D, =0

{A‘F@)\,#max = O

sHmin

From (iv) and (v),

éi/(bkal/«max = ( A3(A3 + 1) +A— A+ >¢>\7u‘"l&x

—A —>Mmax (Nmax"l‘l) —0

(vii),

A= Hmax (/flmax + 1)

Similarly from (iv) and (vi),

)‘ - ﬂnlin(ﬂmin - 1) (Vlll)7

2(At this stage, since A? and A3 are not Hermitian, the eigenvalues A and p are not necessarily real
numbers, but we will see they are real.)
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From (vii)—(viii),

(,U/max + Mmin)(,umax — [min T 1) =0

Since fimax — fmin = N4 + n_ = n = non-negative integer (and therefore real),
fmax — Mmin + 1 > 0, and we have pyax = —fbmin- Together with pimax — flmin = 1, We
thus have
n
Hmax = 5 = —HMmin
n/n
=5 (5+1)

We have obtained the irreducible representation of the “A-spin”.
(Rewriting A; — D(A;), n/2 — A, u — a, and defining D(A?) = 327 D(A;)?)

a N

D(A)®W = A(A+ 1) W,
D(A3)®W = q oW

a

where

1
A=0=1

727 ) )
a:\—A,—A—i—l,---A—l,%

(2A+1) (:Bmponents
- /

[\CR V]

§3.4.4 Irreducible representations of Lorentz group

» Since we have two SU(2)s, D(A;) and D(B;), any irreducible representations of Lorentz
group are parametrized by a set of two numbers:

(A, B) A, B = integer or half-intetger

» The corresponding field is

@gﬁ)’B) (2A+1)(2B + 1) components
a=—-A-A+1,---A-1,A
b=-B,~B+1,---B—1,B

transforming as

D(A%)8Y," = A(A+ 1)@l

D(43)®," = ady" ;
D(B*3}"” = B(B +1)8l}"” (7)
D(B3)@l" = vl



» The three kinds of fields introduced in §1.4 are:
(A, B) =(0,0) scalar fields — §2 and §3.3

1 1
(A, B) = (0, 5) , <§,O> spinor fields —§3.5

11
(A, B) = (2, 2) vector fields

» For scalar fields,

A=B=0,
a=b=0
00 1-components

D(4;) = D(B)) = 0

SD(A) =T+ ~w M™ = 1

2
~0/(2) = D(A)®(z) = (x)

—— on May 21, up to here. —————
A comment after the lecture:

Q: (The same student as the last week) I still think that the LT of fields should be
() = U(A) @ (2)U(A),
not ' (x) = UN)P(2)U(A) .

It is not a matter of convention. The latter convention, which would lead to U(A) |p) =
|A~1p), is inconsistent with U(A1)U(Ay) = U(A1Ay).

A: (After some discussion with the student...) You are right! I was wrong!

[Note added on May 22] Let me clarify the point. Let’s consider the scalar field, for
simplicity. We want to keep the relations

U(A)U(A2) = U(A1Az),
as well as ¢/ (z) = ¢(A~'z), or ¢'(2') = ¢'(Ax) = ¢(x).
Then

Wrong :¢p(A~'z) = ¢'(2) = U(A) (z)UA)!
)

= U(A)U(A)@(x)U (M) U (A) ™ = U(A2A1)¢($)U(A2A1)*1
LHS = U(Ag)¢(A7'2)U(A2) ™ = o(Ay AT M)
RHS = ¢((A2A) o) = ( ATTAS M) IIICOIlblBtth!
Correct :¢p(A™? ): () = U(N)'o(x)U(N)
= U(Ay) " UML) o(2)U(A)U(Ag) = U(A1Ag) " p(2)U (A1 As)
LHS = U(As) 7 o(AT ) U (A2) = o(A; 1A ')
RHS = ¢((A1As) " 'z) = ¢(A; AT 2)  Consistent.
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-~ Correction

-

Wrong  ®'(z) = U(N)®(z)U(A) .
Correct '(x) = U(A) ' ®(z)U(A).

The latter is consistent with U(Ay)U (A1) = U(A2Ay), but the former is not. There are
corrections in § 3.3 of the lecture note. Please see the PDF file.

J

Where were we?

§3 Lorentz. ..

§3.1 x— 2 =Ax.

6§32 A=1+w.

§3.3 ¢'(2') = o(z).

§3.4 P'(2') = D(A)P(z).
(today —)

§3.5 Spinor Fields

1
» Consider fields with | (A, B) = (O, 5) :

(2A+1)(2B+1) =1 x 2 =2 components
o\ p=—1/2.1/2.

Thus, D(A;), D(B;) <= D(J;), D(K;) <= M" and D(A) are 2 x 2 matrices.
From (6) and (7),

D(4;) (i ®
D(B;) = 50 '

o; : Pauli matrices o1 = (1 1) 02 = (z _l) 03 = (1 _1> :

- For ® = L1z ) ,
D19

1/2

(2 X 2)a

01

D(B3)® = _1/2> &, D(B,)® = (0 o> &, D(B_)® = <(1) 8> .
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Thus,

;

(8) = 2
MY = _%Gijkak
< ) 1
.2\4'0Z = ZéO’Z

» Denoting the 2-component field <I>l()0’1/ 2 as

1
(0, 5) field: |¢Ypa(z) a=1,2|
its Lorentz transformation is given by
Vo) = D(N)o Prs(x),
B
D(A). = exp (z‘&iD(JZ-) + z’niD(Ki)>

oL 1 g
= €ex W;=0; —1Ni=0;
PR o)

e D(A) for a rotation around the z-axis

. 1 303 6%93
_ z _ 2 , — :
D(A) = exp (193203) exp < _%93> ( 6_393)

e D(A) for a boost in the z-direction

= e - 2 _
D(A) = exp < 7]3203> exXp ( %773> ( o 13
Comment on the unitarity.

1
D(J;) = 50 are Hermitian, D(J;)" = D(.J;),

1
but D(K;) = 2501- are anti-Hermitian, D(K;)" = —D(K;).
Thus, the spinor representation of the Lorentz group D(A) is NOT unitary in general.
(For instance, the rotation (i) is unitary, D(A)TD(A) = I,
but the boost (ii) is not unitary, D(A)TD(A) # I.)
In general, there are no non-trivial finite dimensional unitary representation
of the Lorentz group.

]
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1
» Similarly, for spinor fields with | (A4, B) = (5, 0) , /20 from (6) and (7),

1 g 1
D<AZ> = 10-7: D(‘]l) = éo-i MY = _Qeijkgk
2 — . | X
D(Bl) =0 (2 X 2) D(Kz> = _iéo-z’ MO — _iéai

» To summarize, there are two kinds of 2-component spinor fields with (A, B) = (0,1/2)
and (1/2,0), and their Lorentz transformations are given by

(4, B)
1 o1 1 o1 1
<0; 5) Y — Dp(A)Yr = exp (Zeiio'i - 7]1‘501) YL = <I + 291502' — M50t ) Y

1 1 1 1 1
(5, 0) : Yr — Dr(A)Yr = exp (ieiiai + 77z‘§0z‘> VYR = (1 + i0i§0-i g0t ) VR

(We omit the argument z and 2z’ = Ax for simplicity.)

Their infinitesimal transformations are

1,
0P, = 5(291' - Ui)UﬂﬂL

1
g = 5(291' + ni)oivr

» Note that

1
From (9), 0] = 5(—2'92‘ — )oYy

by using eo; = —o;e where € =10y = (_01 (1]) ,

—_

edpy = = (—ib; — n;)eoi Yy
1
d(evy) = 5(@'91- +ni)oi(eyr)

Thus, ey transforms in the same way as ¥g in (9).

\)
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» Comment on spinor indices

The indices of 2-component spinors are often denoted by undotted and dotted labels:
(VL)a,  (¥YR)a

together with invariant tensors €*?, ¢#?, and extended Pauli matrices ag 5 (see below).

In particular, the spinor contraction such as € = 1,£% = 1,6*7&4 are very convenient
(once you get used to it), but in this lecture, we do not use them.

§ 3.6 Spinor bilinears

» We have seen the Lorentz transformations of spinor fields ¢ and ©¥g. In order to
construct a Lorentz invariant Lagrangian from them, let’s consider Lorentz transfor-
mations of spinor bilinears, such as

ViR = (V51 ¥5s) (Zg) = V1R + VL VRe.

YLosr = (Y11, ¥i2)os (32) = V¥ — Yra¥re.

In general, we can think of various combinations

{w kol vk} x (2 x 2 matrix) x {vr, ¥, V7, v}
They can be classified according to SU(2)xSU(2).

1
¢L7¢7{"' (Oaﬁ)
1
¢R7¢Z"‘ <§a0)

§3.6.1 (0,1/2)® (0,1/2)

1 1
» If there is only v, field, the possible bilinear terms transforming as (O, —) ® <O, —)

are
YT (2 x 2 matrics) - ¢z

Among them, 1 e ¢ is Lorentz invariant.
CO(Ype vr) = (0vp)evr, + bre(diy)

= (00— myutol ) vn + ofe (50— miowin) - - 9)

1

= 5(29k — nk)lﬂg((fgﬁ + EO'k)wL
——

=0
=0
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» If there is only ¢y field, similarly, z/;j%e Y% is Lorentz invariant.

» If there are both 1y, and 1y field, we can also think

Wl - (2 x 2 matrics) - 9y..

Among them, M#ﬁ is Lorentz invariant.

L O(htn) = (00R)¢L + h(6r)
= (%(—iek + Uk)@b;rzak) v + Tﬂz (%(wk - 7714:)014:%:) (- 9)

Comments

(i) In terms of SU(2)xSU(2), the above terms, ¢Te 1y, w}be Yy and wLwL correspond

to
<0%) ® (0%) - 00 ® 0D

this part.

(ii) One might think that

WTer = (b, ) (_01 3) (Zﬁ;) = Yuthy — Yy

vanishes. However, if 1); are anti-commuting (as in quantized fermion field),

1Py = —1hp1hy and hence T e does not vanish.

(iii) ¥Tey and M# Yy terms correspond to Majorana mass terms,

and ¢L¢ 1, corresponds to Dirac mass term.

If we consider a charged fermion (such as electron and positron), only the Dirac
mass term is allowed.

Field @ is charged (under conserved symmetry)

<= Lagrangian is invariant under ® — ¢™“®.

YTe)r is not invariant under vy, — €™y,

while @Z)}L_-{wL is invariant under 1, — e, 1 — €Yp.

In the following we consider a charged fermion and hence only the Dirac mass

term ¢L¢L.
(Neutrinos may have Majorana mass term (maybe Majorana fermion). Still un-
known.)
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§3.6.2 (1/2,0)® (1/2,0)

» Similarly,

Vi, Yhebr, wlewr

are Lorentz invariant, corresponding to

(%,0)@(%,0)2 @ @ (1,0)

this term.

We only consider the Dirac mass term wquR.

§3.6.3 (0,1/2) ® (1/2,0)

» Consider

Wl - (2 x 2 matrics) - ¥p.
There are 4 independent combinations, which can be taken as

Wivr,  whowr (i=1,2,3).

They transform as

S(Vivr) = m(Whorvr),
S(Whoivr) = mi(Yhr) + einbr(Vhoivr).

Problem
@)-17) Show them. ]

Combining them,

ﬂsz 0O m mn 3 ?/JEIDR
s|vkovr| _|m 0 65 —b| | vhorvn
@/)LUQ@ZJR n —03 0 th ¢LUZ¢R
1/)2031/)3 ns b =0 0 ¢LU3¢R

This is nothing but the transformation of Lorentz 4-vector! (See the equation in §3.2.)

O'“:([,O'i):(é (1))’((1) (1))’(? BZ>’<(1) —01)

the above equation can be written as

St hR) = wh, (VhoPr)

Defining
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—————— on May 28, up to here. —————
——— June 4, from here. —————
12:05-12:10 J-PARC H¥RDE(x |

Where were we?

§ 3 Lorentz. ..

§3.5 v (0,1/2) and ¥ (1/2,0).
§3.6 Spinor bilinears
§3.6.3 (0,1/2) ® (1/2,0)

S(Photpr) = Wi, (Yhovbr)

(« last week)
(today —)

» Similarly, defining

5'“ = (], _Ui)

One can show

Sl ML) = wh (Wl a¥ )

Comments

(i) In terms of SU(2)xSU(2), this means
oD o (L) (2!
"2 277)  \2'2

(ii) For finite Lorentz transformation, they transform as

7 (@) Upla’) = Vh(x) Dr(N) 0" Dp(M)n(x) (2 ¥p(a’) = Dr(A)en(x))
= AR ()0 r(w),

is a Lorentz 4-vector.

namely
Dr(A)'o"Dgr(A) = A*,0”

where

1 1
Dr(A) = exp (i@kgak + nkﬁak) ,
A’uV = eXp (ZQZJZ + ZHZKZ)M

[(J)F,, (K", — §3.2]

v’ v
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Similarly,

1 (@) ey (@') = ¢l (x) Di(A) " Di(A) g ()

S

v

A+ GV

= AP (2)3 g ().

Problem

DR(A)TO'MDR<A) = A’ul,O'V

- ~ . [Hint: (— see the PDF file)]
DL(A)TO"MDL(A) = A“VO'V

(b-18) Show {

One can prove it, for instance, in the following way.
1) Define
~ a1 1 . .
Drgr(s) =exp |s z@kiak TGk | | X*(s) = Dp(s)o"Dg(s)

A (s) = exp [s (i0;J; + i K; )] Yi(s) = A" (s)o".

2) Show X*(0) = Y*(0).

3) Show aﬁyu(s) = (Z@ljl + ’iT}iKi)“VYU(S).
s

4) Show agX“(s) = (160, J; + in, K;)" X" (s).
s

5) From 2), 3), 4), X*(s) = Y*(s), and therefore X*(1) = Y*(1).

(iii) The other combinations, ¥Tes#)z and w};&“ewz, also transform as Lorentz 4-
vector, but we do not consider them. (They are not invariant under v, —

e“Yr, Yr — €Pp.)

» (Now we have obtained Lorentz scalars and vectors from spinor bilinears, ready to
construct the Dirac Lagrangian.)
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§4 Free Fermion (spin 1/2) Field

: To construct the Dirac Lagrangian
L =P(i7"0, — m),
solve the EOM (Dirac equation)
£ = (170 —m) = 0,

and quantize the Dirac field.

§4.1 Lagrangian

§4.1.1 L in 2-component field

» In §3.6, we have seen 1/1}21%, 1/}21/11:5 are Lorentz invariant. They can be the Lagrangian
terms.

» On the other hand, 1/120“1#}3, wj:&’%/JL are Lorentz vector. They can be combined with
0, to make the action Lorentz invariant.

For instance, / d*z w;a#auwR is Lorentz invariant:

[ s vh@)o 0 inta) [ s vl @) 0inls)  (ile) = Da(A)va(A )

:/d“x Vr'(2)0" 0, ¥R (T).

Problem
@)-19) Show it. j

» There are other combinations with 9, but

- 8M(’(/)};U‘“77/)R)Z total derivative and not a viable Lagrangian term.

- (@ng)a“wpb: equivalent to w};o—uausz up to total derivative.
» Similarly, / d*x wj;&“@M@UL is Lorentz invariant.

» Combining them all, we obtain the Lagrangian of the free Dirac field:

L = ipho"dubp + i 5" 9by, — m(Uir, + Wlvr).
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Comments

(i) The factor i is to make the Lagrangian Hermitian:

(ko 0ur)" = ~i(Outon) 0"
= iqua“a#l/)pg + total derivative

(ii) vr/R is has a mass dimension 3/2. ([Whotd,0r] = 2x [Wr]+[0] = 2x3/24+1 = 4.)

(iii) m is a real positive parameter ((QZJ}L#DL)T — T 4R) with mass dimension 1.

§4.1.2 4-component Dirac field and v matrices

» The above Lagrangian can be written in terms of four-component Dirac spinor
and gamma matrices (Dirac matrices)

L = V(iy"d, —m)¥

= 0htD) | (g, )= (" )] (02

Dirac Spinor: ¥ = <wL>
VR

. ot
gamma matrices: 7" = | _,
o

where

v=u =l ;1) = whotd)

e ™) o 7)o ™) (7))

{4} = 29" 1axa Clifford algebra in 4d

» The v matrices

)
=
I
N
QI
=
Q
=
~_—
I

satisfy

Comments:

(i) {A, B} = AB + BA.

(ii) There are other representations (bases) of v matrices which satisfy {y*,7"} =
29 1.

(e.g., Dirac rep. ’yo = (I _1—> /Vi = (—a- Ui))

m
The above rep. y* = (cr“ o ) is called Weyl (chiral) rep..
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(iii) We sometimes use a notation “Feynman slash”:

¢ = Vua/u
for a four vector a*. The Dirac Lagrangian is written as
L=V —m)0.

(iv) A convenient identity

v 1 v
dd = 7"a,0"a = {7 taua
=g¢"I aua, = a’l

» The Lorentz transformation of the 4-component Dirac field is given by

- (3]
(4 ) ()

= exp (%wwSW> U(x)

where, from Dy, r(A) in §3.5, the generators S*” are given by

i
. 50;
0i _ | 277
S = .
—§Uz‘>

1
gij — |~ 2%ikOk
- 1
—36ijk0k

They can be written as

(block-diagonal: reducible rep.)

v _i v
St = z[v‘w ]

and satisfy the commutation relation of the Lorentz algebra,

(1 §P7] = (gHPSV7 — g"PSHT — ghT SV 4 gP7 GHPY |
» Note that UT and ¥ transform as
U (2)) = Ul (2) exp (—%wWST“”> :

U (2)) = Ut(z) exp (—%wWST’“’> A0
— \IJT(.T)’)/O exp (—%W/WSIW> ( SJ”W’}/O — ,_)/OS/W)

= (o) (o™

Thus, UTW is NOT Lorentz invariant (note that ST £ SH),
but UV is Lorentz invariant.
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§4.2 Dirac equation and its solution

» From the Lagrangian £ = W(i@ — m)¥, the EOM (Euler-Lagrange eq.) is

0=0, Lg — iﬁ
5(8, 1) 5w},

=0— [1°6d —ml)],, .

‘| (i —m)¥(z) =0  Dirac equiation

Commnets

)
(i) The other Euler-Lagrange eq. 0 = 0, (—£> L gives the same eq.

5(0,9,)) o0,

(ii) In terms of 2-component spinors, it is

—ml 0”90, (Y1 _ 0
i&“@u —ml ’QDR -

(The mass term mixes left- and right-handed spinors. For massless fermion, v,
and Yp are different particles.)

» Let’s solve it. First of all, if W(x) is a solution of Dirac eq., then it also satisfies the
Klein-Gordon eq.

0= (_Za - mI)ab(Za - m[)bcqjc
=( @9 +m?I),.V. (sign corrected after the lecture)
~—
=019, I
= (O4+m?H)V,.

» Asin §2.3, consider Fourier transform of W(z) with respect to Z,

U, (T, t) = / dPp U, (p,t)e®

Then
0= (0+m?)W,(z) = / d’p (Efa(ﬁ, t) + U, (5, 1) (7 + m?))@ﬁa
2
E

(inverse FT) — W, (p,t) + E;lffa(ﬁ, t)=0
o WP 1) = ua(P)e P+ w, (et (ua(P), wa(P) = 4-component spinor)
‘Ifa(f, t) — /d?’p (ua(ﬁ)e—iEpt + wa(meJriEpt) eiﬁ-f
= /d3p <ua(ﬁ)6_ip'm + we(—p) e+i”'$> — (1)
——

PO=Ep
= v,(P)

o1



on June 4, up to here.
June 11, from here.

Where were we?

§4 Free Fermion
§4.1 L
§4.2 Dirac eq.

W, (7, t) = /d?’p (ua(ﬁ)e_ip‘” + wq(—D) er.z)poEP —
= o
(« last week)
(today —)

» Eq. (1) satisfies the necessary condition ((J + m?)W¥,(x) = 0, but not sufficient. From
Dirac eq.

0 (la — m)ab\Ilb(x)
dp ((p = m)apus(D)e™ " + (=p = m)avn(P)e"™7) ,_ -

(p — m)abub(ﬁ)efmpt + (—’Yopo _ ’yi(—pi) — m)abvb(—ﬁ)eHEPt

(inverse FT) - 0

This should be satisfied for any ¢. Thus,

{(ﬁ‘ — m)astiy(p) =0

(_p _ m)ab%(ﬁ) —0 (p = Ep)>

i.e., u(p) and v(p) are eigenvectors of p with eigenvalues m and —m respectively.

p u@) | =m | u@) ],

po v =] @

> In fact, the eigenvalues of the matrix p are

det(p — ) = -+ = (2® — m?)?

— r =m,m,—m,—m,

corresponding to two independent u(p) and two independent v(p), satisfying (2).
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» We can also think the “helicity” (= projection of the spin onto the direction of mo-
mentum):

Pz 1

h pr) = ‘ S7 Where S’L = ——€;; Slk
T S
_ 1 g; . DL(Jz)
5 (o) = (P ) s sas s
whose eigenvalues are +1/2. Since [p, h(p)] = 0, simultaneous eigenvectors of p and

h(p) can be taken:

ur(p) u_(p) | vi(p) v-(p) P (p) = mus (p)
m m -m  —m e.g., 1
hf;> 1/2  —1/2|-1/2 1/2 “\ hp)us (p) = Su+(p)

» The explicit form of us(p) and v4(p) can be written as

o= () o= ()

with
1 pt —ip? coS ge’zd’ A )
U+:? Lo )= g pt = p'/|p] = sinf cos ¢
—P ) p S11 2 ~9 2 . .
3 4 p* =p*/Ipl = sinfsin ¢
S N 5 = p/[] = cos
- 2(1 — p3) \ —p' — ip? — cos Set?

satisfying (9 @) = £|plne,  ning = s

~ Problem ~

(b-20) Show that the above u(p) and vi(p) are indeed the eigenvectors of p and
h(p)-

2m0 g
(b-21) Show ¢ Us(p)vy(p) = —2mdsy

v
=
<
(IJ\
S
I

(b-22) Show

(b_23) Show {Zs:i us,a(p)?_js,b(p) = (p + m)ab

s==+ Us,a <p>USJ)(p) = (p - m)ab ‘
- J




» To summarize, there are four independent solutions to the Dirac equation,
U(z) = / &’p (ws (p)e™™, u_(p)e™™", vi(p)et™e, v (p)e™) o,
I
» The following is a technical comment for those who read Peskin [2]. You can check

0 _ 0
o= 01—*-5:(](1” 71 )UT, U= (n,,n
p pl—p 0 P +|p (n4+,m-)

Thus, the matrix \/p- o in [2] can be explicitly written as

o = V1° = |p] 0 i
P _U( 0 \/p‘“r\ﬂ)U

then, /p-o ne=+p"F|pl ns

Similar expression holds for p- & and /p - 7 as well.

§4.3 Quantization of Dirac field

L=V(ij) —m)V.
~ 0L —

U, L My, = —— = (Vin®), = i (=0

ve=gg = (Fn)u= it} (= %)
Comments
(i) U, — g, =iV}
oL
but then, V! «— 7 (Ilyx, = ek 0 777)

One should do the quantization of constrained sysytem with “Dirac bracket”.

9*L(q,q

In general, if det ( - )) =0, p; and ¢; are not independent.

In such a case,
Poisson bracket quantization

\ Dirac bracket /

Here, we skip the details and do naive quantization with ¥, and Ilg,.

(ii) When ¥, and Ily, are anti-commuting, right-derivative and left-derivative gives
opposite sign. Here, Iy, is defined with <_right—delrivative.

. : 0 L0
(If A and B are anti-commuting, <BA)6_A = B, while 8_A(BA> = —-B.
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§4.3.1 Quantization with Commutation relation vs Anti-commutation relation

» Quantization with equal-time commutation relation

[q]a(z)?H\Pb(y)]xO:yo = [\I[a(x)>ilpz<y)]x°:y° = 60

) (f - g)éab

does NOT work. Instead, quantization with equal-time anti-commutation relation

{Wa(), M (y) oy = {Wa(@), iWH () bao—yo

works. Let’s see it.

= i0®(Z — )0

» First of all, expand the W(z) with the 4 independent solutions of Dirac eq.

u(p)e

—ip-xT

Y

ve(p)e

+ip-x

d3 —ip-x 1p-x
as U,(z) = /ﬁ Sz; (as(P)us.q(p)e + ds(P)vsa(p)et )pO:Ep-

d3p ip-x —ip-x
then Wi(z) = /mg (al(ﬁ)ul,a(p)e” —i—dl(ﬁ)vlﬂ(p)e 8 )pozEp'

Here, ¥(x), as(p), and dy(p) are the quantum operators. At this moment a,(p) and

ds(p) are just expansion coefficients.

» The following can be shown:

[\Ila(x)v qjlt(iy)]zozyo 5(3) (f - y)éab
others

[ar(m @] = (27T (ﬁ_ q_)érs
[d.(p), ds(tf)] = (21)*03) (5 = §)ys
others =0

Y

{ {\Da<x)7 qu (y) }Jzozyo
others

0

others

= 09T — )

=0
{a:(P), al(@)} = (2m)*0° (0= @)
{d:(P),dl(@)} = (2m)*0° (P~ q)drs

A

95
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» Let’s first show (2)" = (1) and (2) = (1). Hereafter, we use a notation

A B} — {[A,B]:AB—BA
{A,BY = AB + BA

to discuss the two cases simultaneously.

» First of all, from (2)" (2), [a,a} = [d,d} = [a,d} = 0, and therefore [V, U} = 0.
Similarly, [¥T, T} = 0.

» The remaining is [¥, UT}, and

[Wa(

— t L d3p d3q
t,x)aq]b(tyy)}_/<2ﬂ.>3 /2Ep/<2ﬂ')3 /2Eq
<30S ([, al (@ s ()ul () e

r=%+ s=%+
+[dr (ﬁj’ dl(@} Va,r (p)v;;s(q)eip“e—iqy)

20=y0=t

Problem
@)-24) Show it, by using (2)(2)" and (b-23). ]

» Thus, (2)’ = (1)’ and (2) = (1).

» (1)) = (2)” and (1) = (2) can also be shown.

~~ Problem ~
(b-25) Using (b-22), show that

1 )

as(p) = > ul,(§) | d*ze” W, (x)
>,

a pP=Ep

1 )

L) = = S ol () [ re o, (2)
o,

\ a pO=E,

(One can also show that the RHS is independent of x°.)

(b-26) Using (b-22) and (b-25), show (1)’ = (2)’ and (1) = (2).
-

» Therefore, (1)’ <= (2)” and (1) <= (2).
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» On the other hand, the Hamiltonian is given by
H = /de (ma¥ — )
%

0
(note that Iy is defined with right-derivative, and hence H 59 0.)

_ / a0 T (i — m)w)
=0
— .. (using (b—22))

d3p
= [ G L () - i) ————— )
» From (3) and (2)’(2), one can show:
[H, al(p)] = Epal(p)
[, 0.(7)) = ~ By, "
[H,dl(p)] = —E,d{(p) '
[H, ds(p)] = Epds(P)

Note that (3) and (4) are true for each of the [e, o] quantization and {e, e} quantiza-
tion.

—————— on June 11, up to here. ——————

——— June 18, from here.

Where were we?

§4 Free Fermion

§4.3 [e, 0] vs {e, 0}

d’p
1= | Gyt (el - dL 7)) 3)
[H, a}(7)] = Eyal ()
[Ha as(ﬁ')} _Epas(@ (4)
[H, d}(5)] = — By (7) |
[H, d.(5)] = Eydy(7)

(« last week)
(today —)

» [wrong quantization —| Now, if we would quantize with [e,e], (1)’<=(2)’, then

d!(p) would decrease energy.
H (1) 1)) = (A H + [H.di7)]) |X)
— (Bx - B,) (dl()1X)).
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and one could construct a state with infinitely negative energy.

>z

1 (dld) X)) = (Bx = 1 — By =) (dld] - [)).

— —c0
Note that, we cannot change the roles of d and df, because
(7). d'(@)] = 27695 - ),

fixes that d' (d) is the creation (annihilation):

A7) - d' (@) = (2r)50),
e || - [ld@ x| = enrsoe) 2o

(If we would define d = dt, dt = d, and define the vacuum by d |0) = 0, then
—[|d"(p) | X)||? > 0, inconsistent!) «- [wrong quantization]

On the other hand, if we quantize with {e, e} (1)<=(2), we still have

(H,d}(p)] = —Epd{(p)
[H, ds(p)] = Epds (D)

but now we can exchange the roles of creation and annihilation operator.

b'(p) = d(p)
b(p) = d' (p)

because

{d(p).d"(@)} = (2m)*s® (7 - §)
=dd" +d'd
=b'b+ bb!
= {b(@),b"(7)}

and also we can define the vacuum state by b]0) = 0.

Comment

b(p) |0) = 0 means that, in terms of original d and df, d'(p) |0) = 0.

In terms of the original “vacuum” |04) with d(p)|04) = 0, the vacuum |0) can be
understood as

0) o< [T d" () 10a).

all p

which leads to d(p) |0) = 0 because d'(p)? = 0. This is related to the idea of the
“Dirac sea”.
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» The Hamiltonian then becomes

1= [ G5B Y () o)) )
= —b.(P)BL(P)
= (0 (3) — (2n) 500

= [ G X (s + i) = [ £370)

We neglect the (infinite) constant term, as in the scalar case.

» To summarize, quantization with anti-commutation works, and we have

-

v, s(P)us.a (D)™ + bL(D)vsa(p)e ™"
= | G 2 0 (0 D)) o,

U, (z), Ul (y) oo = 0BT — )0,
{{ <x>7 b(y>} B (x y) ' — {br(ﬁ)’bl(q_)} = (27T)35(3)( - ®6rs
others =0
others =0

H= [ G X (sl + )

The anti-commutation relation implies Fermi-Dirac statistics;

‘ Pauli blocking ‘

al(p)al(q) = —al(@)al(p), in particular (ai (ﬁ))z -

§4.3.2 Particle and Anti-particle

{a:(@),al(@)} = (2m)°0 (5= @)y

U(1) Symmetry: ¥ — We™
— Current: j* = U~

— Charge: Q) = /d%jo

- / @ > (al(Pa(p) — bL(Fb(P))  (+constant)

(2m)?
and hence
{[@, a}(7) = +al(p)
Q. 01(p)] = —bL(p)
Namely,
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e al(p) increases the charge by one. (Particle creation)

e bl(p) decreases the charge by one. (Anti-particle creation)

§4.3.3 One particle states

05 5,y = \/2E,al () 0) : particle
;g7 = V2E,bl(p) |0) : anti-particle
Normalization:
(7,705 G, 5) = /2By /2E, (0] ar(P)al(@))0
= 2E,\/2E,(0] {a,(P)al(])} —al(P)a,(7))0

(271')36(3) (ﬁfq’)(srs
= (27m)32E,0® (9 — )05
Similarly (; 7, (¢ G, s) = (27)*2E,6® (5 — §)r..
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§5 Interacting Scalar Field

§5.1 QOutline: what we will learn

~

(@ Lagrangian — quantization

e operator
2
@ e path integral (2 ways)
 (0[T[¢(21) - - ¢(2)]|0)
@ e [.S7Z reduction

A d

short cut

e S-matrix, amplitude M

@

e observables (cross section o and decay rate I")

[Feynman rule]

A d

A long way to go,...let’s start from (4).

§5.2 S-matrix, amplitude M = observables (¢ and I')

Let’s consider the probability of the following process, P(a — ().

» If the initial and final states are normalized as («|f) = 4, then
P(a— B) = (B, out|a, in)|*

(The meaning of “in” and “out” will be explained later.)
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» However, we are interested in states like

’Oé> = |h17ﬁ17 h27ﬁ27 e hnaﬁn> )
(h; ; helicities and other quantum numbers of the particle )

with a normalization (see §2.7 and §4.3.3)

<h,ﬁ|h/, (j} = (271')32Ep5(3) (]7— ®5hh’ . (1)

§5.2.1 S-matrix

» The transition amplitude

[( ,1725;17"'h/maﬁm ;Out’hlaﬁla"'hnaﬁn ,lH) = <h’/171;;17"'h;m]5;mShlaﬁla"'hnaﬁng

is called S-matrix.

Comments

(i) The definition of in and out-states will be given later. (—§5.5.)
(ii) S-matrix is Lorentz invariant. (—§5.5.)

(iii) In the following, we omit the label h; and h!.

§5.2.2 invariant matrix element, or scattering amplitude, M

» As long as the total energy and momentum are conserved,

Wi Dl S a) o 6OY By =Y E)x 69 vy =Y p)
f i f i

——

final initial

=500 =Y m)
f i

We define the invariant matrix element, or scattering amplitude, M as

e PolSIFL ) = 2703y = S i) - iM@r P+ P
f i

(2)

Comments

(i) Since the S-matrix is Lorentz invariant, the amplitude M is also Lorentz invariant.

(ii) The amplitude M can be calculated by the Feynman rule. (— goal of §5.)
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§5.2.3 transition probability: general case

» Let’s normalize the system with a box.

Then, from (1),
(qp) = 2E,(2m)*8* (7'~ )
= 2Ep/clg‘xei(i"_‘i)'f

=2E,V 57 . (3)
~—

discrete

Define

1
’@Box = \/m |ﬁ> : (4)
Then, from (3)(4),

Box(cﬂp Box — 5;3‘,@

Therefore, |p)g,, has the correct normalization. For instance, if there is no interaction,

2 1 (¢ =
:575:{ W=7

P(ﬁ_)];;> - Box<ﬁ|]3>Box

! 0 (" #p)

» Thus,

Probability P(p; - - - pn — ];'1 o ];;m)

N N 2
= BOX<p,1 e -p’m|S|p1 i 'pn>Box

() ({L3k) () 71 sl

()

1
2F;

» But this becomes zero for V — oo.

What is the (differential) probability that the final state is within [p/ I v ;+ dy/ 17

dP = P(§i -+ P = ' 0 X AN

number of states within [];’f,];;f + dﬁf]
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d3p d3p
dN = = -V
(2r/L)*  (2m)3

From (5) and (6),
0P = PGy

m d3p/f 1 n 1 1 n . . ~ . 2
- (11:[1 (QW)SQE}) <1;!2_Ez> (V) ’<p1"'pm|5’p1"'pn>

N N 2
From (2), ‘<p’1~~p’m|5|p1~'pn>

» Thus, dividing Eq.(7) by T', we obtain the differential transition rate

P (L A1 . -
_ n 92 (4)§ ’_E Y. A ool
T 4 <H 2Ei> (}1;[1 (271')3 QE} ( 7T) 0 ( pf pz) ’M(pl Pn — Py pm)’

i=1

N

4D,
(8)

» Now let’s discuss the cases n = 1 and n = 2.

§5.2.4 n =1, decay rate

q1

a2 ]
. particle decay

> Gm
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From Eq.(8), the probability that the particle A decays into the range of final states
I f,p st dp/ s] per unit time is

dP(pA ? q1Qm) 1 2
— dd,, G
T 9F (M(pa— g gm)l

Integrating over the final momenta, we have

-~ Decay Rate ~N

T(A—1,2,-)
1
= /d¢>m!M(pA—>ql g |?

2mA

d3qf 4 2

at rest frame

(x symmetry factor)

—— on June 18, up to here. ——————
June 25, from here.

Where were we?

( ™

L — quantization
e (0[T[¢---¢]0)
o LSZ

e S-matrix, amplitude M

We are here.] §5.2

Feynman rule

e observables (o and I')

- J

Comments

(i) The mass dimension of I is (energy)** ~ (time)~'.
Problem
(b-27) Show it. ]
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(i) If there is more than one decay modes, their sum

(A —all)=T(A = 1,2 )+ (A 51,2 )+

1
is called the total decay rate, and its inverse 74 = m gives the lifetime
of particle A.
(iii) If not in the rest frame, E4 = ymy, and
r— L [ |M|? L —
=50 = -1, T =T
9 EA m ~ est Y Trest

Lorentz inv.

The lifetime becomes longer by a factor of v. (consistent with the Special Rela-
tivity!)

(iv) If there are identical particles in the final state, one should divide by a symmetry
factor.

(Example) If particles 1 and 2 are identical,

Thus, we should
(D reduce the integration range (§ = [0, 7] — [0, 7/2]),

and are indistinguishable.

or

@ divide by a symmetry factor (= 2) after integration.

§5.2.5 n =2, cross section

pa 0
42 ) )
. particle scattering
> Pa Gm

From Eq.(8), the probability that the final particles are in the range of (¢}, ¢ + dgy]
per unit time is

dP<pA7pB ? QIQm) 1 1 2
S ) gy
T V k25, OnlMPa = e ) (©)

» In this case, we consider a quantity called “scattering cross section” (or just cross
section). Suppose that a particle A collides with a bunch of particles B (with number
density np) with a relative velocity vy
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e
° —— o &—o B
A “ .

The probability that the scattering A, B — 1,2--- occurs per unit time is given by

P<pA7pB_>]-72.")
T

= MNPRB * Urel 'g(p/pr — 172 : ) (10)

cross section

Why “cross section”?

A

If we think a disk with an area o, the number of B particles which goes through this
disk within time 7T is given by

Ng=0 V-1 ng.
This is consistent with (10). (For small 7', Ng < 1 and it gives the probability.)

» In the situation of Eq.(9), there is only one B particle, so ng = 1/V. Thus, the
differential cross section that the final state goes within [p/,,p’; + dp/;] is

L dpP 1.2
dg(pAapB — 1,2 ) — ” vV (pAapB , )
rel

. [ (10)]
1 1

= om . . on. g )2 T

Integrating over the final momenta,

~ Cross Section ~
U(pAapB — 172 : )
1
= d®,, —q- - qm)|?
QEA'QEB 'Urel/ |M(pA gl q )|
. ]_ m d3qf 2 45(4) M )
T 2E, 2Eg v 1H GnaE, o) (pa+p5 =Y a)|M(pa,ps = @)
re f=1 f 7
(x symmetry factor)
- Y,

Comments

(i) The mass dimension of o is (energy) ™ ~ (length)? ~ (area).
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(ii) If there are identical particles, divide by the symmetry factor (same as I).

(iii) The relative velocity vy is given by

Pa DB
E4 Eg

Urel =

(For a head-on collision with speeds of light, v, = 2.)

(iv) EaFpvwe = |Eppa — Eapp| is not Lorentz inv., and therefore the above o in not

Lorentz inv. either.

(Lorentz inv. cross section can be defined by replacing as E4Epvye — \/(pa - pp)? — m3im%.)

Problem

(b-28) Show that \/(pa - pp)2 — mim% = EsEpv for pa || Pa.

§5.3 Interacting Scalar Field: Lagrangian and Quantization

» We consider the so-called ¢?-theory.

-

L= [ @o(38 - 5(Fef - Jmte? ~ 20t )

Vo
same as free theory Interaction

(A : real and positive constant)

O(Z,t) «— m(Z, 1)

0L o

= ———— =0(Z1)
IP(T, 1)

Equal-Time Commutation Relation (ETCR)
[6(7, 1), m(7,1)] = i6<3><f—g>

[0(Z,1), 0(4,1)] =

[ (2, 2), 7(¥,
H= /d3
:/d

g (%& + 5T

7$— L)

Hamiltonian

-

(same as free theory)

t)
t)] = (same as free theory)
(

1 2 2 )\4
—i—2m¢ +24¢ )

> Why L. = —)\/24¢* 7

+¢3 _¢3
Ling. ~ R —¢3 = Hinp. ~ { +¢° — —oc0 for ¢ — oo or — oo.
_¢4 +¢4

68
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Thus Liy. ~ —¢* is the simplest possibility.
1/24 = 1/4! is for later convenience (Feynman rule).

» The EOM is

(O+m?) ¢(z) = —Zo(x)®|

which can be derived by (i) Euler-Lagrange eq. or (ii) Heisenberg eq. + ETCR.
(see §2.2 and (b-1))

§5.4 What is ¢(z)?

» In the case of free theory (A = 0),

¢~ TErt g () 4 QiMEpte—iﬁ-faT(@>

o) = [t (
I‘ f— —_—
(2m)3\/2E,
We could solve the ¢-dependence from K-G eq. (O + m?)¢ = 0.
» What if A £ 0 7?7 Let’s try Fourier transform at ¢ = 0.
d3p . .
t=0,7) = | —————(a(p)e?® + a'(p)e 7). 1
ot =0.9) = [ i (97 + gl 7) 0

from ¢=¢T
Then, ¢(t, ) = e™'¢(0, Z)e

d3p 1 . . N . . L,
:/ (61Hta(]3>6_2Ht62p'm+61HtaT(p>€_ZHt€_lp.z>.

(2r)* \/2E,

» With the interaction term,

H = Hy+ Hjy
~ ¢t~ (a+al)!
 [H,a(f)] = —Eya(p) + O(a®, c*al, a(al?, (a1)?)
— ea(p)e™™  includes many a and a.
— ¢(t #0,7) also includes many a and a'.

Thus, ¢(x) cannot be considered as a field to create/annihilate just 1-particle state,
but it includes (infinitely many) particle creation/annihilation.

Comment
Here, we have used [a, af] etc, but a and a' are just Fourier coefficients in Eq. (1).
What are these a and af?

o [a,al] =7
o H =7 556
o [H,a=?, [H, a'] ="
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(Skip this part in the lecture) In fact, a(p) is not uniquely determined by

(1) 4 o(t = 0,7) = / (jﬂf; L (o) + o)

For any operator f(p), replacing

a(p) — a(@) +i (f(D) + f1(—P))

does not change the above equation. We will define a(p) more precisely in §5.6.

§5.5 In/out states and the LSZ reduction formula

» We want to define the in/out states in §5.2.

» In the free theory, one particle state is (see §2.7)

p) = V/2E,a' (9)10).
where (see §2.3)

al () =

\/;T / &z e~ —w's(x) +Ep¢(x)>

3 ipxT
\/ﬁ/dxe 8()(;5()

0
(faog = fOog — (Oof)g, 0o = 615)

» We consider the same operator in the interacting theory.

a'(p,t) =

—1 T
d*x e 0y (),
)

which is now time-dependent. (%(RHS);«fé 0 for A #0.)

» And we define the in/out states by

pi -+ Py in) = \/2E,al (pi, — 2B, a' (p, —
|q1 -+ Gm; out) = 2quaT (¢1,+o0) 2EqnaT (Gm, +00)
where
A v d
al (p, Foo) = >z e P 0y ¢(z).
20—=Foo /2
Comments
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(i) One can think of operators with wave-packets:
@) = [ @@
=22
with  f(p) ~ exp (_—(p Pi) )

402

and then later take o — 0. See the textbooks by Srednicki [1] and/or Peskin [2].
(ii) The vacuum state |0) is the ground state of the full Hamiltonian H = Hy + Hiy.

» Then, one can show

-~ LSZ reduction formula N

(@1 gm; out|pi - - pp; in)

B o e foncne o
i=1 i=1
- J
— on June 25, up to here.

—— July 2, from here. —
Where were we?

L — quantization  §5.3

o (0]T[¢--- ¢]|0)
We are here.]| ¢LSZ, §5.5

e S-matrix, amplitude M

552
Feynman rule
e observables (o and I')
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-~ LSZ reduction formula N

Correction

(@1 -+~ gm; out|pi - - - py; in)

m

X O[T (¢(w:) - - - (am) (Y1) -+ ¢(yn)) 0)

< last week
— today

where

~ time-ordering T ~

d(x)p(y) for a0 >y°
o(y)p(x) for y° >af

¢(x11)¢(xz2)¢(xi3> -+ for l’gl > x?g > x?g >

» Proof of the LSZ formula First, from def. of |in) and |out),

(LHS of the LSZ formula)
= V2B /2By, -+ (O]a(di, +00) -+~ algm, +00)a’ (i, —00) -+l (P, —00) 0)
= V3B, /3By 0T (aldi, +00) -+~ a(gi, +oo)a! (7, ~o0) -+ al (7, ~) ) )

(.- already time-ordered) (1)

» Next,
a1 (7, +00) — al (7, —o0) :/ dt A o' (5.1)

= /OO dt g [\/_/d% e_ip’mb_(;gb(x)] (.- def. of a'(p, 1))
= -..|Problem (b-29): Fill this gap|---

— [ s e @ mt)o)

\/ﬁ
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Thus, a'(p, —00) = a'(p, +00) +

\/;Tp / d'z e”P* (04 m?)¢(x).
Similarly, a(p,+o0) = a(p, —00) + \/%Tp / d*z (0 4+ m?)é(x).

» Therefore, from (1),
(LHS of the LSZ formula)

— 2B, /3, WT( o) - @m+wL&@;g)~d@%—m0KD

7 I

D ond R R B

N —
time-ordering time-ordering
a(qi, —00) [0) = 0 (0] a®(p1, +00) = 0

= (0 [(i/d4x1 e (w +m2)¢(a:1)) (i/d4y1 ey, +m2)¢(y1)> } 0)
= (RHS of the LSZ formula) B

Comments

(i) In the derivation of the LSZ formula, we have used
a(p, £00)|0) =0

where |0) is the ground state of the full Hamiltonian H = Hy+ Hiy. There is a subtlety
here, but we do not discuss the details in this lecture. (See also the comments in
the pdf note.)

Under certain assumptions (axioms) on the quantum field theory, such as
“spectral conditions” (A7 hILZEAM), “asymptotic completion” (58
M), and “LSZ asymptotic condition”, one can show the above equation
a(p, £00)|0) = 0.

For instance, the “asymptotic completeness” (H#iiEf5E2ME) says that, the
Fock space spanned by the “in”-operators:

0), @l (5, —00) 0) , a' (5, ~00)a’ (¢, —00) |0) , - --
=1 )

and that by the “out”-operators:

vert = {10} a7 +00) 0 . ' (7, +o0)al (7, +00) 0) - }
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are the same as the Fock space spanned by the Heisenberg operator ¢(x), V:
Vin — VOUt = V.

For more details, see e.g.,

Kugo-san’s textbook [5] 77—V 50 & Tiw 1 JUERIK—EE, B a8

and Sakai-san’s textbook [6] D& Tiw] PHULh, ZEHERE.

They are in Japanese. I have checked several QFT textbooks in English,
such as Peskin [2], Schrednicki [1], Weinberg [3], etc, but I couldn’t find the
corresponding explanation.

(ii) In general, the state

V2E,d! (p, £00) |0)

with al (p, £00) dPxe”P® 0 (x),

20—4o00 4 /2

does NOT give the correct normalization for the 1-particle state. The normalization
receives corrections from the interaction, but we neglect the correction here. (See also
the pdf lecture note.)

One should either define the operator by
1

zoﬂioo /2

(see e.g, Kugo-san’s and Sakai-san’s textbooks [5, 6]),
or rescale the field as

a' (P, £00) = d*zre T 80 o(z)

o(x) = VZp.(x) (¢(z) : rescaled, or renormalized field)

(see e.g., Srednicki’s textbook [1])
where

= |{plo(2)|0)[*

represents how much the state ¢(x) |0) overlaps with the 1-particle state |p).
(Note that (p|¢(z)]|0) = e®* and Z = 1 for the free theory.)

In this lecture, we do not discuss the renormalization, and take Z = 1 as the
leading order perturbation.
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§5.6 Heisenberg field and Interaction picture field

(0| T(d(x1) - - P(x))|0) ¢ Now we want to calculate this.

§5.5, LSZ formula

(outlin)

§5.2

o,

Idea: perturbative expansion in the coupling A.

There are two ways:

e ‘“interaction picture field”. (- We choose this in this lecture.)

e “path integral” formalism.

The two ways give the same result for (0|T(¢(z1) - - - ¢(z,))|0).

\_
» First,
o(t, 7) = (0, D)™
o(t, ) = M (i[H, $(0, 7)])e "
— ’LHt¢< ) —iHt
and therefore the Hamiltonian can be written as
H = e—thHeth
1 1 A ,
—c [ (2¢<t,as> 3 (To(t, 27 + gmolt, 57 + So(t, )" )
s (L o = )1 o 2 3 A 4
= [ &z =¢(0,7)" + = <V¢(O,x)) +-m“¢(0,2)* | + | &’z | —=¢(0, )
2 2 2 24
Ij.f() ]—}i,nt
Note that Hy and Hiy are defined in terms of ¢(0,Z) and ¢(0, Z) at t = 0,
and they are time-independent.
» Define

Interaction picture field ¢;(t, 7)

—iHot

1(t, T) = ""$(0,)

Cb
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~ Problem

(b430,31) Show the following (i)-(vi) for the interaction picture field ¢;(t, Z), by using

N

[6(0, ), 6(0,§)] = i6® (& - §)
¢1(t,7) = ™'¢(0, D)™ and ¢ [¢(0, ), ¢(0,9)] =0
(0, %), $(0,3)] =0
- J
Heisenberg field Interaction picture field
O(1,3) = (0, F)e 4! O1(1,T) = 01 (0, F)o 10!
(evolved by H) (evolved by Hy)
- ¢ =i[H, ¢] or=ilHo.¢r] .
eisenberg eq. - . . (1)
¢ =i[H, ¢] ¢r = i[Ho, ¢1]
band dy | (t,@) = eH1(0, F)e ! bi(t,7) = €0, (0, &) Hot —— (i)
QBI([)?:E’) = ¢(Oaf> (iii)
(Note, however, that ) T) # gb(O,f))
[¢(t7 )7 ¢<t )] =10 (3) (f - g) [¢I( ’ )7 ¢I( )] - 7'5(3) (‘f - ?j)
ETCR 9(¢, ), 6(t, )] = 0 01(4,). 61(4.3)] = 0 (iv)
[9(t, @), o(t, )] = 0 [6r(t, D), ¢1(t,9)] =0
Hamiltonian | H = /d3 < (ngﬁ( 7)) | Hy = /d?’x (%gﬁ[(t, 7)? + %(6@251(15, 7))
imoe )+ ¢@x>) Fyron ) ()
Each term in the RHS depends on t, | Each term in the RHS depends on ¢,
but the sum is t-independent. but the sum is t-independent.
EOM (O+m?®)¢ = —%¢3 (O+m?)gr =0 —— (vi) ¢; is a free field!
§5.7 a and a' (again)

> ¢; satisfies (OO + m?)¢; = 0 and therefore it can be solved exactly (see §2.3).

_ d’p
Cbl(x)—/(%r)?, TEP

(a(p)e ™ +al(F)e)

pOZEp

Note: a(p) and af(p) are the expansion coefficients of ¢;, not ¢.

(We can also write them as a; and a}.)

76




Thus,

0.2) = &(0.2) = - - -
9(0,) = o1 }_[x)_ all of them can be written in terms of a, a.
0=

—
substitute Hiy = -+

» From (i)(iv)(v) in §5.6, one can show (see §2.4 and §2.5)

» Define a state annihilated by a(p):
|0); : a(p)|0), =0, Hy|0); =0 (Hp: normal ordered)
Note that |0), is NOT the ground state of the full Hamiltonian:

H |0>1 = (HO + Hint) ‘O>1 7é 0
" Hiyg ~ @7 ~ (a +a')*

10), # 10)

§5.8 (0T (¢(z1) - -~ ¢(wn)) |0) =7

We want to express (0T (¢---)|0) =? in terms of ¢; (a and af).
Step (i) ~ (vii).

0

n’

step (i) redefine the space-time points such that 29 > 29 > .-

OIT (¢(x1) - - ¢(2n)) [0) = (Olp(21) - - - @(x)[0). (1)

step (ii) ¢(z) =7

8(2) = (0, B)e
{¢1($) = ot (0, 7)e~tHot
o B(x) = Mt tHot g () giHot it
=)

o(z) = u(t)pr(x)u(t). ————(2)
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step (iii) |0) =?

10]u(t) = 4{0] fite it

= (0] (- Hy|0), = 0)

Insert an identity operator:
1=0) (0] + > n) (nl
n=1

where |n) represent the eigenstates of H with eigenvalues E,, > Ey = 0. (The summa-
tion includes continuous parameter (integral).) Then

(0] u(t) = (0] [|O> (0] + Z In) (n|] o—iHt
= 7(0]0) (0 e tHt | Z 1(0[n) (n| o tH1

= 0[0)¢0]  +) 1(0ln) (ne "

The 2nd term oscillates for ¢ — oo. Thus, for regularization, we take

t — oo(1 — ie) (e>0,e —0)

then, e ifnt _y gmilnoo(l=i€) o o=Enooe _, ()
Therefore
lim (0] u(t) = 1{0]0) (0]
t—oo(1—ie)
Similarly
lim uf(~#)[0); = [0) (0]0).
t—oo(1—ie)
Thus

10]0){0[O[0){0]0)
1010) {0]0)(0]0),
gl
L A0 (<)),
t—soo(l—ie)  [O]u(t)uf(—t)]|0);

(010]0) =
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step (iv) Substituting (2) (3) to (1),
(Olg(1) - - - d(2a) 0)

1
= lim
t—oo(1—ie) [(Olu(t)ut(—t)]0);

x (0] u(t) - ul (tr) dr(an) u(tr) - ul (t2) dr(a) ulta) - ul (tn) dr(n) ultn) - u'(—1) [0),

KO|U(t, 1) d1(21)U (1, t2)pr(w2) - - - @1 (n)U(tn, —1)[0)1

= lim
t—o0(1—ie)

{O|U(t, —1)]|0);
where

Ulty, to) = u(t)u' (ts) (t1 > to)

—_ e’LHotle—ZH(tl—tg)e—’LHotQ

— on July 2, up to here. ——

— July 9, from here.

Where were we?

(4)

Ve

L — quantization  §5.3

We are here. |

R 4

o (0[T[¢---¢]|0)

§5.6—§5.8

e LSZ, §5.5

R 4

e S-matrix, amplitude M

§5.2
¥ Feynman rule
e observables (o and I)

.

§5.8
step (i) - (vii)
step (iv)

AO|U(t, t1)dr(w1) -+ - |0)1

lim
t—roo(1—ic)

(0lp(x1) - - - ¢(2n)|0) = A0]U(t, —1)|0);

where U(tl, t2) = u(tl)uT(tg) (tl > tg)
engtle—iH(tl—tg)e—iHotg

< last week

— today
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step (v) U(ty,ty) =7 It satisfies

U(t,t) =0
0 :
a_tU<t17t2) = —iH(t1)U(t1,t2) —(5)
1
0
aTU(tl, tg) == ZU(tl, t2)HI<t2)
2

. , A
where H(t) = o' Hy e "Hot = /d?’a:ﬂ(b[(xf

Problem
Eb-32) Show (5). j

The solution of (5) is, if H,(t) at different ¢ commute,

X Ulty, ts) = exp (—i /: Hf(t)dt> ,

but this is wrong. The correct solution is

Ult ts) = T {exp (-@- /t ! Hf(t)dt>]
T g% (—z’ /: Hl(t)dt>n] B

Let’s show that (6) satisfies (5).

) 170 M "
st =2t 5 (=i [ ) |
00 1 n t1 k—1 t1 n—k
=y =T (-z / Hl(t)dt> (—iH;(t1)) (—i / Hl(t)dt>
n=1 : k=1 t2 — t2

(Here, t; > t > to,and hence H;(t1) can be moved in front of T)

S -(—@ / Hyt dt> ]

n= 1

= —iH;(t)U(ty, t2)

step (vi) From (4),

<0|¢($1) . ¢(xn)|0> _ lim I<O|U(t7 t1)¢](1‘1)U(t1, t2)¢]<£€2) e ¢[($n)U(tn, _t)’0>1

ol ie) {O[TU(t, —1)[0);
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With (6), everything is written in terms of ¢;(z). Furthermore, the numerator is
time-ordered (t > t; >ty > ---t, > —t), and hence it can be written as

AO|T [@r(z1) - - - pr(2n)U (L, t1)U(ty, L) - - - Uy, —t)]|0) 1

(0T (é(1) - P(24))10) = lim

t—o0(1—ie) ]<0|U(t, —t) |0>]
o AT i) r(e UG —0]0) .
t—o0(1—ie) ]<0|U(t, —t) |0>[

where we have used U(tq,t2)U (to, t3) = U(ty,t3).

step (vii) Substituting (6) to (7), we finally obtain

| xorr[¢1ccn--~¢v<xn>exp (—4b/if¥m¢vdf)]|o>f
®)

Everything is written in terms of ¢;(z) and |0),. By expanding exp(—i [ H;), we can do the
perturbation expansion as O(1) + O(\) + O(N\?) - --.

§5.9 Wick’s theorem

» All the terms in the numerator and the denominator of Eq. (8) have the following
form:

K0T [pr(1) -~ b ()] [0) -

» Define ¢(x) as follows.

¢r(x) = / @Tﬁj)—pﬁfpa@(f_iPI + / %GT(@@M
= (1) = ¢l(2)
and introduce
~ normal ordering N ~

N [¢r(z1)¢1(22)] = N [(@(z1) + ¢ (21)) (0(22) + ¢ (22))]
= N [p(@1)p(@s) + " (21)p () + p(21)¢" (22) + @' (21) " (w2)

= (0o (@) + ¢! (01)p(@2) + ¢ (w2)p(ar) + ¢ (1) (22)

(move ' to the left, and ¢ to the right.)
N J
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Then

{zTNNaaT e {ilgTI@::OO = [O|N [¢1(z1) - dr(zn)] 0)r = 0.

» We want to see the relation between

T{gr(w1) - br(ea)] == N{or(ar) - br(an)]
In the following, for simplicity we write
Sr(x:) =i, o) =i, . =@+l
Let’s start from n = 2.

> n=2

For 29 > a7, T(p12) = P12 = (1 + 901)(902 + 905)
= o102 + P10} + Pl o2 + ]}

= N(¢1¢2) + [1, 3]

d? : d* : . -
where [SOIMOJ;] — /$6—1p1~m1 / #ewymz [a(p1)7aT(p2)]

(277)3\/ 2E,, 3\/ 2L,

3
— / —d p e_ip'(‘rl_:EQ)
(27)%2E,

For 2§ > 29, we have a similar formula with z; <> x5. Therefore,

pOZEp

1
T(p192) = N(¢162) + P12
3 —ip-(z1—x2) 0 0
Q';bz:/( d°p {6 (x1>x2)

X 4
/ 2m)32E, e~ (@a—m1) (z9 > V)

/ \p°=\/m

not an operator,
but c-number.

—
The symbol ¢;1¢, is called “Wick contraction,” and it can also be written as

4 .

2m)4 p? — m? + ie

(e>0,e—0).

\
p # \/p? +m? in general.

It’s just an integration variable.

Feynman propagator
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~ Problem ~

(b-33) Show

[ [ e

(2m)% p? — m? + ie (27m)32E, e~ (@2=21) (29 > 20)
(e>0,e—0) 0’ = E,) )
-
(Hint:)
Im
[
9 > Y
—E, + i€
X
Re

¥ > 1§

(See the pdf file)

4 . 3 0 .
/ d’p ¢ e~ (z1—22) _ / d’p /di ! e~ (z1—22)
(2m)* p* — m? + e (2m)3 ) 21 (p0)2 — (§* +m?) +ie

———
2
EP

and, for e — 0,2
i . 1 1
~ 7 - .
(p?)? — B2 +ie P’ — (E, —ie) p’+ (B, — ie)

000 (.0 0 .
For 20 > 29, e’ (#1=22) 5 0 for p° — —ioo,

;00 (.0 0 .
For 29 > 9, e=#"(#1=22) — 0 for p° — +ioco.

Take the contours as above

3(Here, EZ —ie ~ (E, —ie/(2E,))? and we renamed €/(2E,) as € in the right hand side. The overall
coefficient of € doesn’t matter as far as e — 0.)

83



T(¢16205) = 5T (br16hs) = SN (912) + Pyhido
[
= o3N(¢p1¢2) + <P;T;N(¢1¢2) + 30102

[ [
{%Nw@ﬁ:Nw@w@+m@@+¢mmg
@;N(¢1¢2) = N(¢1¢290£)

i 1 1
= N(p10203) + P10203 + D1D203 + D1d203 .

s 0< 0 0 0< 0 0
Similar for 7 > 5, x5 and x5 > 27, x5.

»n:4

— — o
T(P1920304) = N(P1920304) +?1¢2N(¢3¢4) + ¢103N(d24) + - o+ Q1920304 - -

6 terms 3 terms

» In general

~ Wick’s theorem
—
+ Z ¢i¢; N(¢1- s “On)
pairs L
s B
+ > Gkt N(¢r-- - - -¢n)
2 pairs 1kt
_|_ e
— —
Z Gidj - Dpdg (n = even)
i 5 pairs — —
Z Dij -+ - PpPqdr (n= odd).
"T_l pairs
-
-~ Problem ~
(b-34) Prove it by induction.

-

» Therefore,

{OIT [br(21) -+ - pr ()] |0) = & /2P

0 (n= odd).
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§5.10 Summary, Feynman rules, examples

» Let’s calculate the cross section for 2 — 2 scattering in the ¢?* theory,

1 1 A
_ 1 wy L2, Aoy
L 28M¢8 ) 2m¢ 24(;5 .

b P3
D2 D4
» From §5.2,
(P1, P2 = 60) ! /dCIJ M(props = pa,pa)2 X
o = -
b1, P2 2E1~2E2|vl —v2| 2 P1, D2 D3, D4 5
S~—— ~~
final state id%rrllt;fal
particles
Consider in the center-of-mass frame
b3 . .
pP1 = —P2
pP1 0 P2 / P3 = —Ds
\90 7l = 172l = 1%l = 17l
s Ei=Ey,=E;=E,
= VIAF 2
Then
1 1 ds?
N — (1
oorp = 60) = =3 [ T IME (1),
/ ds) = / dy / dcos®.
Problem

(b-35) Show (1).

» From §5.2,

(p3, pa; out|py, po; in) = (2m)* 6™ (py + p2 — p3 — pa) - iM(p1, P2 — P3, Pa)
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» On the other hand, from the LSZ formula in §5.5,

n

(p3, pa;out|py, po;in) = H li/d%ieim'“ (Di+m2)] X H {z’/d%ie”pi"” (0; +m?)

j=1,2 i=3,4

(2
. J/

We call it “1,SZ factor”
X (0T (9l1)(w2)(ws)8(w) ) |0)

where, from §5.8,
O o)+ enteesp (i [ Srontot) |10y
0t [exp (=i [ Sontart) o0

OIT(6(1) -+ 6(x1) ) 0) =

—~

3N)

3D)

—~

» Namely,

(LSZ factor) x (3N)

(p3, pa; out|py, pg;in) =

(3D)
We can expand it with respect to .
> O(\%) term of (3D) = £0]0); = 1.
> O(\%) term of (3N)
_ O] T(1¢h26364) [0} (from Wick’s theorem in §5.9)
o — | —
= G1P20304 + P1920304 + P1920304
1 3 l]e———e3 1\ 3
> < ’ ' \
2 4 20e——e4 2 4
where
T d4p i —ip-(r1—2
¢1¢2:/(2ﬂ)4p2—m2+ie€ pr(@1—22) EDF(Jfl—IQ).

» Now, (LSZ factor) X Dp(z1 — x9) =7
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» In general,
(LSZ factor); x Dp(z; — y)

= i/d%iey”“ (O +m?) Dp(z; — y)

g

_ d4p i(—p?—{—mQ) —ip;- (w1 —x2)
~ ) enip -y

— Fiiy (4)

POINT | LSZ factor cancels the Dp(x; — y) factor of the external line.

—————— on July 9, up to here. ——————
—————— July 23, from here. —————

Where were we?

Ve

L — quantization  §5.3
§5.6—§5.9
* (0T[¢---¢]|0)

e LSZ, §5.5

W

e S-matrix, amplitude M
\_/[ §5.10, here.]
l§ 5.2

Summary and Feynman rule
e observables (o and I')

(LSZ factor) x (3N)
(3D)
(3D) = 1+ O(\).

— —t ] —
(3N) = 1020304 + P1020304 + P1P20304 + O(N).

I
$102 = Dp(x1 — 2).
(LSZ factor); x Dp(z; —y) = eTPiY.

§5.10  (p3,pa;out|ps, pa;in) =

< last week

— today
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—
» In the case of ¢p1¢o = Dp(x; — 23), both x; and x4 are at the external lines, so

i/d4xz~e—ip2'”2 (Dg + m2) i/cflzzcie_f“pl'ﬂc1 (Ell + m2) Dp(z1 — x2)

NS g
Vo
e*ip1-932
— i/d%ie_zm'” (—p? + m2) e~ P12 = 0.
—_——
=0
Ty T

POINT) If two external points are directly connected, ®*—® =0.

» Thus, O(\°) term in (LSZ)x(3N) = 0.

» Next, O()\) term in (3N)

— AOFT (Sr0a10u(=1) [ a'y0,6,0,0, ) 01

(4 pairs = 105 combinations)

= terms including gL ot (

1 3
1 1 1 1
> < Y G1920304 - ¢y¢y¢y¢y etc, 9 terms
2 4
1 3
[— 1
}@ < ¢1¢2§Z|53_(I¢4 COyPydy 0y, etc, 72 terms
2 4

HIWIH

+ ¢1¢2¢3¢4_2—4 d ydy by d,0, 4! = 24 terms (in total 105 terms)
1 3
Y 24 of A A introduced for this
of — = — was intro .
TR Y
2 4

— (i) / Dy (e — y)Di(s — ) Dir(s — y) D (s — ).
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» Thus, from (4),
O(A) term in (LSZ) x (3N)
= (_Z’/\)/d4y€im-yeipz-ye+ip3-ye+ip4-y

(—iA)(2m) '™ (p1 + p2 — ps — pa) (5).

» Thus,
(LSZ) x (3N)
(3D)
i O
O(/\O) +O( ) +(9( )
1+0O\) + ’
= (—iN)(2m)* 6D (p1 +py — ps — pa) + O(N?)

(ps3, pa; out|py, po;in) =

» Thus, from (2), we eventually obtain the amplitude at the leading order,
iM<p17p2 — p37p4) = —i\ + O()\Q)

» and substituting it to (1), the cross section

1 1 ds)
U(P1>p2—>¢¢)=——/ M

1287rEf A7~~~

\_,1—/ 7}\2
o2
1287 B}

2
— 2.5 x 107°\2GeV 2 (G;V)

1

2
— 1.0 x 1073 \%cm? (G;V) .

1

- ’ Feynman rules for ./\/l‘

1M = diagrams = >l< +e

(1) diagram with eﬁxt}.—exi) = 0.
Di pj

(2) external line 4‘6 =1.
Di

(3) vertex >< = —i\.
(cont’d)

-
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» Higher order terms:
O(M\?) term in (3N)

(—i)? A A
- [tz | d4zﬁ¢;*) 0);

(6 pairs — 10395 combinations!)

1 3
= terms with % > €><] etc —0
bi Dj 9 4
1 3
+ terms with bubbles >< z  etc
2 4

+ terms with loops at external lines z etc

1 3
+ other loops >£>z< etc
2 4

» In general, terms with loop diagrams are often divergent, and requires “renormaliza-
tion”. Here, we just give qualitative discussion.

= I<O‘T (¢1¢2¢3¢4

» Terms with bubbles are, together with the leading order term,

PSP GG

In general,

fully connected

all bubble diagrams
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On the other hand,

(3D) = {0|T (exp [—i/%(ﬁ‘}])@}lz( 4 8 N )

J/

~
all bubble diagrams

Therefore, all bubble diagrams cancel out between the numerator and the denominator.

» Loops in the external line

—  t AQ_.(, + L + - - - (all such diagrams)

1/
:p2—m2'

The factor Z is absorbed by the “field renormalization.” (In general, the mass "m”
here is also different from the parameter “m” in the Lagrangian.) We do not discuss

it here.

Feynman rules (cont’d)

(4) Ignore the bubble diagrams.

(5) We can also ignore the loops in the external lines if we take into account the
renormalization.

» The other loops.

1 3
Example: >y<>z<
2 4
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1 3
The W x(  termin (out|in)
2 4
1 3
= (LSZ) x the W x(  termin (3N)
2 4
= (LSZ) X the ; Mi term in ]<0|T (¢1¢2¢3¢4( / Qb /d4 —¢ )

i 2 l— I
=5 (7 ) [ [0 oiin 040,00, 6:0.0.6.

x 12 (1,2 ¢ y* combinations)

x 12 (3,4 <+ z* combinations)
x 2 (remaining y* ¢+ z* combinations)

X 2 (replacing y <> 2)

1, .
= (LSZ) x 5(—1)\)2/d4y/d42 Dp(r; — y)DF(% —y)Dp(xs — 2)Dp(xs — 2)Dp(y — 2)2
1
5 Z)\ /d4 /d4ze ip1- Yoo ipa- ye-l-zpsz +ips- ZDF( _2)2 ( (4))
% —i)) /d4 /d4z e~ LY T2 Y o FiP3Z o tipaz

y / dq L a2 / de L i)
(2m)* g2 — m? + i€ (2m)4 02 — m? + ie

Here
1 b1 q DPs3 5
. v N
[ty — a1 50, 4 pa g+ ) N 7
. Yy z
2, o N\
P2 14 Pa

which represents the | momentum conservation | at each vertex.

Thus, the : ><>< 3 term in (out|in)
2 4

_1(_.>\)2/ d*q i / d*? i
— oV (2m)* > — m? + ie (27r)4€2—m2+ie

x (2m)* 6@ (pr + pa + g + 0)(27)*0W (D3 + pa + g + £)

1 d*q 7 7
2( ) / (2m)' ¢ —m?® +ie (—p1 —p2—q)> —m* +ie (2n) 0 b1 A2~ by — )

the factor in (2)
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and finally, from (2),

1 d4 . .
The L 3 term in iM = —(—i)\)z/ d ’ — : —.
5 4 2 2m)* g2 —m? +ie (—p1—p2—q)? —m? +ic

b1 q D3
) z
0 /[ N\
b2 —DP1—P2—4 b
>
~|Feynman rules (cont’d) ~
(6) Momentum conservation at each vertex.
(7) Internal 1 !
nternal line =
—— R I 1
p
d*p
(8) Loop momentum should be integrated by / o)
T
(9) Multiply the “symmetry factor” (such as 1/2 in the above example).
N J
» Note that, if there is no loop, there is no symmetry factor and all coefficients cancel:
. 3
1 4
Example: 2 — 4 scattering. 5
)
2
6
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4 4 1 |_|| 1 |
— (LSZx) ( )/ a / 1 0162+ 0,00, 0:0:0.0: - 0n0nt

x 4! (y contraction)
x 4! (z contraction)
X2 (y < z)

(Ls25)(=iN? [ a'y [ @*2Di(es ~ ) Drls = 1) Dlas ~ )
X Dp(x3 — 2)Dp(xy — 2)Dp(x5 — 2)Dp(y — 2)

_ i
= (—i)\)? x (2m)*6™W (p1 + pa — ps — pa — Ps — ps).-

(p1 + p2 — pg)? —m? — i€

g

the corresponding term in iM

» Different diagrams give different terms: for instance,

3
The N\ ferm in iM = (—i\)? !
e erm in ¢ = (—1i — .
4 (p1+ p2 — p3)? — m? —ie
2 5
z
6

» (That’s all for this semester. Thank you for your attendance!)
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