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§0

Introduction

about this lecture

(i) Language

(i)

(The rule of the department: For the graduate course, as far as there is one interna-
tional student who prefers English, the lecture should be given in English. But for
the undergraduate course, the lectures are usually given in Japanese. Now, this is a
common lecture for both students, and there is no clear rule.. ..

Speaking
Which one do you prefer? Bl J ... (*) We choose this option. )
Writing | E (*)
J _

Web page
Google: Koichi Hamaguchi — Lectures — Quantum Field Theory I

» All the announcements will also be given in this web page.

» The lecture note will also be updated (every week, hopefully).

Schedule

April 10, 17, 24,

May 1, 8, 15, 29, (no class on May 22)

June 5, 12, 19, 26,

July 3, 10, Exam on July 24.

(maybe an extra class on July 31.)

(the extra class is an bonus lecture after the exam and irrelevant to the grades)

(I don’t check the attendance. You don’t have to attend the classes if you can learn by
yourself, submit the homework problems, and attend the exam.)

Grades
based on the scores of homework problems (twice?) and the exam on July 24.
In the exam, you can bring notes, textbooks, laptop, etc.

Textbooks
This course is not based on a specific textbook, but I often refer to the following
textbooks during preparing the lecture note.

» M. Srednicki, Quantum Field Theory.
» M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory.
» S. Weinberg, The Quantum Theory of Fields volume I.



§0.1 Course objectives

To learn the basics of Quantum Field Theory (QFT).
One of the goals is to understand how to calculate the transition probabilities (such as
the cross section and the decay rate) in QFT. (See §0.5.)
Examples
» at colliers
et p Y

Higgs

e ft v

» in the early universe
DM q

DM

L]

§0.2 Quantum mechanics and quantum field theory

Quantum Field Theory (QFT) is just Quantum Mechanics (QM) applied to fields.
> QM:  ¢(t) i=1,2,--- discrete

> QFT: o(,t) Z- -+ continous (infinite number of degrees of freedom)
(Note: uncountably infinite, FF A5 fEHR)

QM QFT
operators 4qi (t)7pz <t> or di (t)a QZ (t) ¢(fa t)? W(f, t) or ¢(f7 t)? gb(fv t)
(Heisenberg picture) | i = 1,2,--- discrete Z--- continous
states (e.g., Harmonic Oscillator)
|0): ground state |0): ground state
aT‘O>7aTaT|O>7"' a;”0>7a;’a}’0>7
a' written in terms of ¢ and p a; written in terms of ¢ and 7
observables
(expectation value) | (|5}, (-[H]-), - (LY, CLH L, -
transition
probability P(i = f) = [(fli) Pi = f) = |(fIi)




In this lecture, we focus on the relativistic QFT.
(QFT can also be applied to non-relativistic system: condensed matter, bound state,. . .)

Relativistic QFT is based on QM and SR (special relativity).

» QM: i # 0 (important at small scale)
» SR: ¢ < oo (important at large velocity)
» QFT: A # 0 and ¢ < o©
(physics at small scale & large velocity: Particle Physics, Early Universe,. . .)

§0.3 Notation and convention

» We will use the natural units

h=c=1,

where

B~ 1.055 x 107°* kg - m? - sec ™,
c=2.998 x 10® m - sec™'.

For instance, we write
— E? = p? + m? instead of E? = p?c® + m?c*, and
— [z, p] = i instead of [z, p|] = ih.

» We will use the following metric.

-1
gMV: _1

—1

(The sign convention depends on the textbook. g,, (here) = gheskin = —grednicki)

ot = (2%, 21, 2% 2°) = (¢, %)

z, = (29, 21, T2, T3) = g’ = (t, —7)

P =, p', 0% p°) = (E, D)

Py = guwp” = (E,—p)

p-x=pu’ =pe,

= 020 — plat — p2a? — PP
=p'2° — 5.z
=Ft—p- %



If p# is the 4-momentum of a particle with mass m,

P’ =p"p, = ") — [pI* = E* — |p?
2

=m-.
§0.4 Various fields
spin equation of motion for free fields
scalar field o(z) 0 (dO+m*)p=0 Klein-Gordon eq.
fermionic field ¢, (z) | 1/2  (iy"0, —m) =0 Dirac eq.
gauge field Az)| 1  O0"F,=0 (part of) Maxwell eq.
(Fuv = 0, Ay — 8,,14“)

We start from the scalar field.

The Standard Model of Particle Physics is also written in terms of QFT:
e quarks (u,d, s,c, b, t) and leptons (e, u, T, 14;). . . fermionic fields

e v (photon), W*, Z (weak bosons), g (gluon) ...gauge fields

e H (Higgs) ...scalar field

§0.5 QOutline: what we will learn

@ quantization of free‘ field
Interacting
e operator
2
© e path integral (2 ways)
® (0T[p(z1) - - - p(2n)]|0)
® e LSZ reduction
v short cut
e S-matrix, amplitude M [Feynman rule]
|
e observables (cross section o and decay rate I)

(. J

> First, we will learn (M@)(@). .. with a scalar field. (— next, fermionic field, .. .)

> A long way to go,... Today, let’s discuss (4) in advance.

4



§0.6 S-matrix, amplitude M = observables (¢ and I)

Let’s consider the probability of the following process, P(a — ().

» If the initial and final states are normalized as (@|5) = 043, then
P(a — B) = |(B, out|a, in)|?
(The meaning of “in” and “out” will be explained later.)
» We are interested in states with fixed momenta.

|Oé> = |Uluﬁlua27ﬁ27 oo 'O-naﬁn> )

(0; ; spins and other quantum numbers of the particle 7)

Let’s consider one-particle state |0, p).
Since the momentum p'is continuous, we cannot normalize the states as (@|5) = dap-
Instead, we normalize it as

[ (0, 010", @) = (2m)*2E,0) (5~ 7050 - (1) ]

Comments

(i) What’s the mass dimension of |o, p) then? (It’s —1.)

(ii) Why E,6®) (5 — ), not just 6 (5 — §)?
— E,0®)(p— ) is Lorentz invariant.
For instance, for a boost Lorentz transformation along the z direction,

EN ([~ B8 E B B 1
(p’z)_(vﬁ 7)(}%)’ f=vle, /1=

one can show that (check it yourself)

E'S(p. — q.) = Edé(p- — q2).

5



» S-matrix: The transition amplitude

;- ;oo . Lo . ;- P .
[(0-17]7/1’ T '0m7p/m aout|0-17p1a **On, Pn 71n> - <017p/1a T 'Um7p/m|5|017p17

o 'O-naﬁnﬁ

is called S-matrix.

Comments

(i) The definition of in and out-states will be given later.
(ii) S-matrix is Lorentz invariant.

(iii) Why “matrix”?
(85 outla; in) = (5]|S]a) = Sga

is a “matrix” with an infinite dimension.

(iv) In the following, we omit the label o; and o.

» invariant matrix element, or scattering amplitude, M:
As long as the total energy and momentum are conserved,

——
final final

= 5(4)(Zp/f — Zpl)
f i

We define the invariant matrix element, or scattering amplitude, M as

Wy P lSIPr ) o< 5O _Ep =Y E)x 6O p, =Y p)
f i f i

(- Pl SIBr - o) = (2m)* DO pl = pi) - iM(PL - Py -
f i

(2)

Comments

(i) Since the S-matrix is Lorentz invariant, the amplitude M is also Lorentz invariant.

(ii) The amplitude M can be calculated by the Feynman rule. In this lecture, we

learn how the Feynman rule is derived from the Lagrangian.

(ili) In this subsection, we derive the formula for

M — transition probability.

on April 10, up to here.



Questions after the lecture:

Q:

A:

o

Why do you promote the discrete label 7 in QM to a continuous label 7 in QFT?
(After all, what’s the motivation of QFT?)

A short answer is, because it works! After all the Standard Model (including the
QED) has been extremely successful in explaining a large number of phenomena
in particle physics and other fields.. ..

In fact, in this lecture, I skip the contents of what is called “relativistic quantum
mechanics”, and directly start from the QFT. A typical introduction in the rel-
ativistic quantum mechanics is as follows. In QM, the Schrodinger equation of
a free field is i(0/0t)y = —(1/2m)(0/dx)*y, which corresponds to E = p?/2m.
Promoting this relation to a relativistic relation, £? = p* 4+ m?, one obtains
—(0/0t)*¢ = —[(0/0x)* + m?|¢ = 0, or (O + m?)¢ = 0. This is nothing but the
Klein-Gordon equation. Now, this is not yet the QFT, as far as ¢ is regarded as
a wave function as in QM. There is still a logical gap from here to the QFT. (In
general, there should be a logical jump when learning a new theory. For instance,
one can not “derive” the QM from the classical mechanics!) Here, I do not try to
fill this gap (e.g., with the arguments of negative energy etc. .. ), but just directly
start from quantizing the fields.

: What are the prerequisites for this lecture, in particular about the Special Rela-

tivity?

Not much. If you understand for instance the notation of z#p, = g, 2"p”, and
the fact that it is Lorentz invariant, then (I hope) the lecture is more or less
understandable. If you are not sure what the statement “z#p, is Lorentz invari-

ant” means, then you should probably review the basics of the special relativity,
Lorentz transformation, Lorentz invariance, etc.

What is the difference between the lower and upper indices, 2* and z,,?

You should review the basics of the special relativity and get used to these nota-
tions.. ..

© Your normalization in Eq.(1) is proportional to F,0®® (5~ ¢). Why don’t you use

a (seemingly manifestly Lorentz invariant) normalization 5™ (p — ¢)?

. A good question. For one particle state with a definite mass m, §®) (75— ¢) implies

E, = E,, and therefore 6 (p—q) = §(E, — E,) x §®® (§— ¢) becomes proportional
to 6(0), which is not very useful when normalizing fields.

: You said that E,6®) (5 — ¢) is Lorentz invariant, after Eq.(1). Then you also

used (implicitly), in the comment after Eq.(2), the fact that 6 (5 — ) is Lorentz
invariant. Are these two statements compatible?

This is also a good question. Yes, both are correct. Check them yourself.



on April 17, from here.

Outline
o free
quantization of ) . field
Interacting
o (0]T[¢--- ¢]|0)
o LLSZ

e S-matrix, amplitude M

We are here.][§ 0.6

N

Feynman rule

e observables (o and T')

» For simplicity, we normalize the system with a box.

2
V:Lga ﬁ: _ﬂ—(naﬁanyanz)
L
L
Then
1 ) ,
8 (g —q) = e BT D7
T
1
=GV dni
discrete
Define
1

’mBox = \/W |ﬁ> .



Then,
1 1

Box<q_1ﬁ> Box — \/2EqV \/2EpV <q_.‘]§>
B \/22 v \/227 v(2”)32Ep5(3)(ﬁ— Q[
_ @5(3)@_ ) [ B, =E, for p=q]
= 054 [ (3)]

Therefore, |p)p,, is the correct normalization to give the transition probability.

For instance, if there is no interaction at all, for one particle state,

. LW =7

Probability P(p'— ]57) = ; -
0 (' #0p)

Box <]5; |]5> Box

Thus,

—

Probability P(py -+ f — 'y D)

. N 2
Box<p,1 o p/m|S’p1 o 'pn>Box

1 1 = - 1 1
— e S|Py (4
‘W Ey S ) gy | W
S ~ol N 2
- (H 2E/) <H 25,) (V) ‘(p’l---p’mls\pl---pn> (5)
f=1"7r i=1 v

» But this becomes zero for V — oo.

What is the (differential) probability that the final state is within [];’ I I Pt dp’ 517

AP = P(F - Pp — Py D)X AN,

number of states within [p7 > P r+ dp' /]

dp. dp, dp. &P

N =G/ ©r/D) @r/D) R

v

dp,



For the m particle final states, }71 o ~];’m,

N N 2
(0'y 0l SIPL - ) (7)

m 3 n n
B (H (C;f)g 22/) (H 2115> (%)
=1 f i=1 7"
» On the other hand, from the definition of M (2),

2

W1 S 1B i)

:(%)45(4)(2]9}_2@ (277)45 pr > ) IMP

sW(0) = / (g:ﬂeio.x E;W)T T : time (— oo))

=m0 =) b)) VT IMP

» Substituting it in Eq.(7) and dividing by 7', we obtain the differential transition rate

dP "o &3/ ] ) )
<H2EZ> (H p>f 2E’> pr sz AM@Py - o = Py -

=1

4o,

(8)
» Now let’s discuss the cases n = 1 and n = 2.

n=1
q1

42 )
. particle decay

4m

From Eq.(8), the probability that the particle A decays into the range of final states
[0 4,0 + dp’] per unit time is

dl (pA ? q1Qm) 1 2
T 2F4 [M(pa = qr---gm)]

10



Integrating over the final momenta, we have

~ Decay Rate

~
NA—1,2,--+)
1
= dd,, 2
QmA/ M= a1 am)
d’ _ %9 )4 2
= (2m)*ot — — ¢ O
2mA H/ om 2, 2T '(pa ;qf)W(PA @ )|
at rest frame
(x symmetry factor)
- /
Comments
(i) The mass dimension of T is (energy)™ ~ (time)~!.
(CHECK) (5} = (2n)* 2B, 69G—q)  — |~ EL
~
E E-3
(@~ Gl SIa) = (2m)* 6D (Y q = pa) X iM(pa = qi---)
E X 1 S EV4 —}E\gfm
d’ _ %49 ) 2
(2 5@ - — m
zmAH/ 2r) 32Ef '8N (pa =3 as) Mlpa = a1 an)l?
! B 6 2m
E2m E‘:‘l
pe

(ii) If there is more than one decay modes, their sum
MNA—al)=T(A—1,2--)+T(A—=>1,2"--)+

is called the total decay rate, and its inverse

1

"7 T(A = all)

gives the lifetime of A.

(Example: muon.

D(p— all) ~T(pu — err,) ~ 3 x 107PGeV.
1

~ -~ —6
Ty 5 10-9Gev 2.2 x 10" sec

11



(iii) If not in the rest frame,

1
r= dd 2
SEL m| M|

Lorentz inv.

In the frame which is boosted by a velocity 3, the energy is F4 = yma.

(v =1/v1-p5%)
— T" becomes smaller by a factor of 1/7.
— The lifetime becomes longer by a factor of ~.

(This is consistent with the Special Relativity!)

(iv) If there are identical particles in the final state, one should divide by a symmetry
factor.

(Example) If particles 1 and 2 are identical,

Thus, we should
(D reduce the integration range (§ = [0, 7] — [0,7/2]),

or

are indistinguishable.

@ divide by a symmetry factor (= 2) after integration.

n =2
DA q1
a2 ] )
. particle scattering
ba Gm

From Eq.(8), the probability that the final particles are in the range of [ﬁ I I i+ dp’ 7l
per unit time is

dP(pa,pp = @1+ qm) 1 1
’ == AP, | M(pa = q1 - qm)|? 9
T V2B, 2F, IM(pa — a1 qm)] (9)
» In this case, we consider a quantity called “scattering cross section” (or just cross
section).
—— o —oo
<— o
° —— o —o B
A .

12



Suppose that a particle A collides with a bunch of particles B (with number density
npg) with a relative velocity v, The number that the scattering A, B — 1,2 - occurs
per unit time is given by

P(pa,pp —1,2--+)
T

=np Vel 0(pa,pp = 1,2--+) (10)

e .
cross section

Why “cross section”?

L 0 &— o B

A

If we think a disk with an area ¢, the number of B particles which goes through this
disk within time T is given by

Ng=0 V-1 ng.
This is consistent with (10). (For small 7', Ng < 1 and it gives the probability.)

> In the situation of Eq.(9), there is only one B particle, so np = 1/V. Thus, the
differential cross section that the final state goes within [p PPt dp' sl is

1 dP(pa,pp — 1,2--+)

do(pa,pp — 1,2---) = U—IV T [ (10)]
L e, M E)
= am m ba q1: " qm .

on April 17, up to here.

Questions after the lecture: (only some of them)

: Is the integration only over the final state momenta ¢ (or p’;) but not over the
g f f
initial ones p;?

A: Right. The initial momenta are specified (by the collider experiment, for in-
stance).

o

Does the amplitude M depend on the final state momenta ¢;?
A: Yes, it does.

Q: If there are identical particles in the final state, one should divide by a symmetry
factor. What about the initial state?

13



To all:

Even if there are identical particles in the initial state, it is not necessary to
divide by a symmetry factor. In the case of final state, when integrating over the
momentum phase space, you should avoid the double counting. (See the figure in
the comment.) For the initial state, there is no integration, and hence there is no
double counting.

I understand the volume factor V in §)(0). What is the factor 7" in §)(0)? And
what do you mean by T"— oo?

It’s basically the same as the volume factor. Suppose that the interaction is
turned on for only a time T". Then, the delta function corresponding to the energy
conservation, 6(3 Ey—>_ F;), gives for >, Ey = > F;, 6(0 fT;Z dt/(2m)e =
T/(27).

Here, for the derivation of the formulae for the decay rate and the cross section, I
referred to Section 3.4 of Weinberg’s textbook [3] (“Rates and Cross-Sections”),
with a modified normalization. There are derivations without a box normaliza-
tion; see for instance Section 11 of Srednicki’s textbook [1] (“Cross sections and
decay rates”) and Section 4.5 of Peskin’s textbook [2] (“Cross Sections and the
S-Matrix).

In general, if you look at more than one textbook for a certain topic, it can help
your understanding a lot.

on April 24, from here.

Outline

( 7

S f
quantization of . ree ) field
Interacting

o (0[T[¢---¢]|0)

o [.S7Z

~

e S-matrix, amplitude M

(We are still here.]|§ 0.6

v Feynman rule
e observables (o and T')

14



Integrating over the final momenta,

e Cross Section ~

o(pa,pp =~ 1,2--+)

1
= dd,, =g g |?
2E, - 2EB Vool / [Mpa = a1+ gm)]

a? _aqy 4
(2 5 - -2
T 2B, 2EB Vre H/ 2ryioE, 2T O (Pat P ;qf)W(pA?PB Q)

(x symmetry factor)
N J

Comments

(i) The mass dimension of ¢ is (energy)=2? ~ (length)? ~ (area).
(ii) If there are identical particles, divide by the symmetry factor (same as I').
(iii) The relative velocity vy is given by
Pa DB

Urel = |75~ — /5

Es Ep

(For a head-on collision with speeds of light, v, = 2.)

(iv) EaFEpvwe = |Eppa — Eapp| is not Lorentz inv., and therefore o in the above
formula is not Lorentz inv. either.
(Lorentz inv. cross section can be defined by replacing as E4 Fgvye — \/ (pa - pp)?* —mim%.)

Problems

(a) Show that the mass dim. of o is —2.

(b) Show that \/(pa - pp)? — m4m% = ExEpve for pa || pp.

(Sometimes I give problems. They are mostly just for exercises. Some of those “prob-
lems” may be included in the “homework problems” which will be posted later, and
which you have to submit.)

15



§1 Scalar (spin 0) Field

We consider a real scalar field ¢(x).
» real: ¢(z)" = ¢(x) (Hermitian operator).

» scalar: Lorentz transformation of the field is given by

$(x) = ¢'(x) = p(A™"2).

Now let’s briefly review the Lorentz transformation (before starting QFT).

§1.1 Lorentz transformation

§1.1.1 Lorentz transformation of coordinates

— is a linear, homogeneous change of coordinates from z* to xz'*,
't = A" ",
where A is a 4 x 4 matrix satisfying
G\ )N s = g, (Or ATgA = g in matrix notation) .
Comments

(i) It preserves inner products of four vectors:

-y = gurty’

— 2. y’ = g,wx'“y'” — ngAupAual,pya — gpaxpya =z-y.

» This is similar to orthogonal transformation @ — v = R¥ where R is an orthogonal

: e T _ ([ cos® sinf) . .
matrix satisfying R* R =1. (e.g., R = <_ sinf  cos 9> in 2-dim.)

Inner products are preserved: @ -7 — @' - ¥ = (Ru) - (RV) = 4 RTRV = 1 - ¥.

.

(ii) The set of all Lorentz transformations (LTs) forms a group (Lorentz group).

» Product of two LTs Ay and Ay is defines as (A1), = (A2)¥ (A1)”,,.
» closure: if ATgA; = g and Al gAy = g, then (AyA)Tg(AsAy) = g.

16



> associativity: (AjA2)Az = A1 (A2A3).
» identity: A, =*, =

» inverse: (A™H)E = g'g,, A7, = A1
Problems
(a) Write the explicit form A for a rotation along the z-axis. Show that it satisfies ATgA = g.
(b) Write the explicit form of A for a boost along the z-axis. Show that it satisfies ATgA = g¢.
(c) Show that the above A™! satisfies A™'A =1, i.e., (A™1)* AV, =67,
(d) For an infinitesimal LT, we can write

A, =61, 4+ dwy, .

Show that dw,,, = —dw,,, and hence there are six independent dw.
We will discuss more on this later in Sec.§2.1.

§1.1.2 Lorentz transformation of quantum fields

— is represented by unitary operators acting on fields:
O(z) — &'(z) = UN)®(2)U(A)! ®(z) : generic field
Scalar fields are the fields which transform as
¢(a) = ¢/(z) = U(N)g(x)U(A) ™" = (A 'x)
Comments
(i) Note that it transforms the field ¢(z) at all the spacetime z.
(ii) Substituting = =y’ = Ay, it means ¢'(y') = ¢(y) (for all y).

(iii) Why & = U®U* for fields ®? Suppose that a state |-) transforms as |-) — |-) = U |-).
Then, with operators O;,

0102 R On |> — U(0102 ... On |>)
= (UOUHYUOLU---(UO,UHU |
= 0,050, |

17



§1.2 Lagrangian and Canonical Quantization of Real Scalar Field

In quantum mechanics, we consider a Lagrangian

In QFT, we also start from a Lagrangian

L= [ ¢ @0, o)

'

Lagrangian density

In this lecture, we consider the following Lagrangian (called ¢* theory):

L= /d% Lp(,1), (&, 1))
= / dPx (%auqsaﬂqs — %ngbQ — %gb‘*)

1. lo = 1 A
= /dgx (§¢2 - §V¢ Vo — §m2q§2 - ﬂ¢4>

where A is real and positive constant, and

0
- G
o 2 3 o 2 ] .
— g S — — % — VY
00 = 0000 = (50) =3 (g0) =6~ 9o %o

The \¢* term represents the interaction. For A = 0, it becomes the Lagrangian of free scalar field:

L = [ & ( 0,004 — jus?)
-/

If we regard ' as just a label,

N
7

L= Z( ox(t)” + )

Sb-o-ooooo oo
-
8
[\
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conjugate
momentum | p; = 0; 7(¥,t) = oL — ¢(Z,t) (functional derivative)
94; 0p(Z, 1)
Hamiltonian | H = sz% H = /d3:c (W(f, (T, t) — C)
= /dgx 2 — 17T + = (V¢) 2¢2+ i¢4)
2 24

1 A

‘Canonical Quantization: Equal Time Commutation Relation‘
[ai(t), ps(8)] = i8y; || [6(@, ), (¥, 1)] = 109 (& — )

[q:(t),q;(1)] =0 [6(Z, ), (¥, )] =0

[pi(t), p;(1)] = 0 [w(Z,1), m(, 1)] =

Comments

(i) The action

S = / dtl = / dtd>x L = / d*z L

is Lorentz invariant.

Check:
Under ¢(z) > ¢/(x) = 6(A"12),

[ dtatiof). 00 - [ atac [o(a-te), 2 )

By a change of variable, z = Ay or y¥ = (A 1)" T,

00(a) » 507 1) = S50 () = (A1), [a,0w)

and hence

0u00°0(x) —» ¢S (A1) 0% (AKa) = g (A" (A7, 10,6](0) 3,
= [0,00"¢](y)

19



= [ d @%a%(x) + gmi() + - )

det 8_1'

1 1 B
ty (000t + o+ ) (ate = faen 3

d*y = | det A|d'y = d4y)

/

= [t (300t + gmtolur +-)
/
S

.. A
(11) Why »Cinteraction - __¢4 ?
24
» For Linteraction ~ @° or —@> or +¢*, the corresponding Hamiltonian term becomes
Hinteraction ™ /d3$(_¢3 or ¢3 or — ¢4)

and hence the energy becomes unbounded below. (Take, for instance ¢(Z,t) =
const — +00.)

» Thus, Linteraction ~ —@* is the simplest possibility.

» 24 = 4! is for later convenience (for Feynman rule).

on April 24, up to here.
Questions after the lecture: (only some of them)

Q: What does ¢ represent? (a particle?) And do we start from it? Just as a toy model?

A: (sorry, I should have said in the lecture.) Yes, it represents creation and annihilation of
a scalar particle. It will become clearer later. It is a good example of QFT as a simple
toy model, but scalar particles do exist in nature. An example of a scalar particle is the
Higgs boson (and it is the only known elementary scalar particle). The ¢* interaction
of the Higgs boson is assumed in the Standard Model, but it is not yet experimentally
tested. There may also be interactions like ¢°, ¢®, or other forms. ...

Q: T am confused with the LT of field, ¢'(z) = ¢(A 'z). ..

A: (I was also confused when I learned it!) As I said during the lecture, the LT of fields
should be distinguished from the LT of coordinates. The former is one of many field
transformations. A simple transformation of field is the Z, transformation, ¢(z) —
—¢(z). The action of the ¢? theory is invariant under this Z, transformation of the
field. Similarly, the action is invariant under the LT of the field, ¢(x) — ¢(A~ ). The
latter seems more complicated because it is accompanied by a change of the argument,
but they are both just transformations of field.
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on May 1, from here.

Outline .
quantization of | free. field §1.2 [We are here.]
Interacting
o (0[T¢---¢]|0)
e LSZ

R 4

e S-matrix, amplitude M

§0.6

N

Feynman rule

e observables (o and I')

(iii) Schrodinger representation and Heisenberg representation:

In QFT, usually the Heisenberg representation is used.

state operator
S-rep. | [¥(t))g Os
time-dependent time-independent
H-rep. | [¥), On(t)
time-independent time-dependent

S-rep.
d
1 [U()s = H(p.q) [¥(t))s
[U(1))s = e T W (t0)) g
Expectation value of an operator: (W (¢)|Os|V(t))s
H-rep.
[Ty = [T(to))g = 70 [W(1))
OH(t) = eiH(t*tO)OSe*iH(t*tO)
Expectation value: H<\If’0H(t)|\I/>H == S(‘If(t)|05|\lf(t)>g

Z%OH (t) — _HeiH(t—to) Ose—iH(t—to) + eiH(t—to) OSHe—iH(t—to)

=—HOgx(t)+ Ox(t)H
= [On(t),H]. Heisenberg eq.
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§1.3 Equation of Motion (EOM)

» There are two ways to derive the EOM.

(i) From the action principle 65 = 4§ [ dtL = 0,

oL oL
———— — — =0 Euler-Langrange eq.
(ii) From Heisenberg eq.,
ip = (¢, H]
iT = [m, H]
. . s (1 Loon Ay .
» From (i), for the Lagrangian L = [ d°z 5@@9’% —5m o — 2—4¢ , we obtain
oL oL A
[ — Iz 2 a3
8u5(au¢) 5 0u(0"¢) +m*p + 2¢° =0
or
2 A 3
EOM | (O+ m?) ¢(z) = —ggb(x) (%)

» Later we will derive the EOM (x) with (ii) again (see §1.5.3).
» Here, there is an important difference between A = 0 and A # 0.

For free field (A = 0), the EOM is linear in ¢(z), and can be solved exactly (§1.4).
- ¢p~a+ta
—  The relations between a, af, and H are obtained.
(creation and annihilation oprators)
For A # 0, the EOM (%) is non-linear, and it cannot be simply solved.

— what is ¢(z) in this case? (more on this later)
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§1.4 Free scalar field

§1.4.1 Solution of the EOM

» Starting from | ((J + m?)¢(x) = 0 (Klein-Gordon eq.)
expressed as

, one can show that ¢(z) can be

_ dS—p a e*ip-a: a eip-x
o0 = | /o, (P Be) W

where ¢(), a(p), a' (p) are operators, p-x = p,a* = p°t—p-7, and p° = E, = /2 + m2.
» Eq. (1) is the solution of the EOM, because
(O +m?)e?* = (9,0" + m?)e*P™
0? = .
— <@ o v2 + mZ) eizp-m
= (—E2 4+ " +m’)e* = 0.
——

2
Ep

» proof: Now let’s show that Eq.(1) is the general solution of the EOM.

(i) Fourier transform (FT) ¢(x) with respect to 7

0@ty = [t &)
N— N——
operator operator

(ii) From the condition ¢ = ¢ (real field),

/ PpC(5, 1) 77 = / PpCH (5, 1)

Using inverse FT,

C(p.t) = CN(=p.t) (3)

(iii) From (04 m?) ¢ = <§—; — V4 m2> ¢ =0 and (2),

23



Using inverse F'T
C(p,t) + E2C(p,t) =0
C(F.0) = C@e ' + C' (e,
From (3), C'(p) = CT(—p), and hence
C(p,t) = C(p)e vt 4+ OT(—p)etiErt,

(iv) Substituting it to (2) (and changing p’— —p'in the 2nd term),
o(Z,t) = /d3p (C(ﬁ)e—iEpteiﬁ'f + CT(ﬁ’)e‘HEpte—iﬁ'f)
= / &’p (C(p)e " + CM(p)et ™)

Finally by normalizing as a(p) = (27)*\/2E, - C(p), we obtain (1). B

» Note that the normalization depends on the convention (textbook).

a(here) = a(Peskin) = a(Srednicki) = (27)%2a(Weinberg).

ﬁH
s

» From (1), we can express the operators a(p) and a'(p) in terms of ¢(z):

1 3 +ip-x Z x x
a@w=¢ﬂf/ﬁxel ¢<}+@a>} .
af(p) = ¢ﬂr/d“”” i6(x) + Byo(a)|
Problems

(a) Substitute (1) to the right-hand side (RHS) of (4) and show that it gives a & af.

)
(b) The RHS of (4) seems to depend on z° = ¢, but the LHS does not. Show that
0 —|[RHS of (4)]= 0, using the EOM. (Hint: integration by parts (/3 %&43))

ot
(c) Substitute (4) to the RHS of (1) and show that it gives LHS.

Pay attention to which variables are just the integration variable. For instance, let’s

solve (a):

fom (1), o) = | 3&E@@5W+wwmﬂ
o) = b
- i

(2m)
————
[dq]

d
( a(q)e " — E,a (gT)e“q ”C)
J((

$9(a) + Byd(z) (Ey+ Ba(@e™ + (~Ey + By)a! (@)e™)
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Thus,

RS of (1) =~ [ e [1dg) (8, By)a(@e- + (~By + Bl @)

/ deeiproe—iﬁ-f . e_iquO ei@f

(27‘(‘)35(3 (p (D i(Ep—Eq)x® (27_[.)35(3 (p+ @ i(Ep+Eq)x°

:\/;Tp \/d;iEq (EQ"'E)(CT)(S (—(7)-#-( Eq+E) (q*)(; ( (Dez(EerEq)

—0

—a(p) =LHS of (4) W

§1.4.2 Commutation relations

» From the commutation relation in § 1.2, we have the following commutation relations

(recall 7(z) = ¢):

[6(F, 1), 6(5, )] = i6©) (& — 7)) [a(p), a’(q)] = (2m)*6@) (7 — q)
[o(Z,1), 0(y,1)] =0 | [a(p),a(@)] =0 — ()
[(Z, 1), (3, 1)] = 0 [a’(p), a"(9)] = 0

Problems

(a) Show that RHS of (5) = LHS of (5), using (1).
(b) Show that LHS of (5) = RHS of (5), using (4).

§1.4.3 a' and @ are the creation and annihilation operators.

» In this section we will see that

a(p)
a'(p)

annihilate a particle with energy E,, momentum p.

create a particle with energy E,, momentum p.

[H,a' ()] = Epa'(p)
[H,a(p)] = —Eya(p)

[P, al (7)) = pa' (7)

—

[P, a(p)] = —pa' (p)

where P is the “momentum” operator. (15 =— BV, We skip the details here.)

» First, we can show that

(6) (We will show it later.)

We can also show

» Consider a state with energy Fy and momentum p;

H|X) = Ex|X)
| X) {[3 .
|1X) = px |X)
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Then, for the state af(p) | X),
H (a'(p) |X)) = ([H,a' ()] + ' (p)H) | X)
= (Epal(p) + a'(9) Ex) |X)
= (B, + Ex) (a'(7) X)),
P (a()1X)) = (IP.a' (@] +a/ () P) |X)
= (pa' (p) + o' (P)px) | X)
= (p+px) (a (27)|X>>-

Thus, the state af(p) | X) has energy E, + Ex and momentum p'+ p’, namely,
a'(p) adds energy E, and momentum p. (creation operator)

» Similarly, we can show

H (a(p) | X)) = (Ex = Ep) (a(p) | X)),
P (a(p)1X)) = (Px = ) (a(p) | X))
and therefore a(p) is an annihilation operator.
» Now let’s show (6). There are two ways.

(i) Express H in terms of a and af.
(ii) Use (4) and Heisenberg eq.
Here we do (i). [Problem: Do (ii): Show (6) by using (4) and Heisenberg eq.]
on May 1, up to here.

Questions and comments after the lecture: (only some of them)

comment: There is a typo at the end of §1.2. In Schrédinger rep., the argument of the RHS
of |1(t)) ¢ should be ty, not ¢.
A: Thanks! corrected.
d3
Q: When you write / \/TPT, does F, in the denominator depend on the integration
p

variable p?
Yes.

Q: Can we construct a “number operator” from the creation and annihilation oper-
ator? Does it give a finite number even though the momentum is continuous?

v

A: Good question! One can indeed define a number operator N = / a'(p)a(p),

.I.

similar to the case of harmonic oscillator, N = > . ala;. Now, next Week we will
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see that a one-particle state is proportional to af(p) |0). You can check explicitly
(by using the commutation relation) that N (af(p) |0)) = (af(p)]0)), which means
the number is one. Similarly, you can check N (af(p)a'(p') [0)) = 2(a'(p)a’ (p') |0)),

etc.
on May 8, from here.
Outline
free §1.4 (We are here.)
quantization of interacting field §1.4.3, a and a'. Showing (6).
 (0|T[p---¢]|0)
e LLSZ

v

e S-matrix, amplitude M

§0.6

~

Feynman rule

e observables (o and I')

.

First,
gb(;p) = /L (a(me—iEpt+iﬁf+ aT(ﬁ*)eiEpt—iﬁ-f)
(27m)3./2E,
d®p _— , .
= [ ———— (a(@)e " + a (—p)eF!) P (§— —p in the 2nd term
/ (2m)3,/2E, (a(7) (=p)e™) (P——p )
Let’s define,

1
(27)°\/2E,

and omit ¢ for simplicity: A(p) = A(p,t). Then

(ﬁjefiEpt

o) = [ (A7) + AT () 7
Vo(r) = / & (AR) + AT(=5)) (if)e”
o(x) = / Pp(—iE,) (A(F) — A(—p) 7% (- A1) = (—iE,) A7 1))

_
xT
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Therefore,

1
H= [ &z (—7T2 +

= /d3$/d3p/d3q eiﬁ'fei z — (2m)38B) (5+q)

. [1<—zEp><—z'Eq> (A(F) — A=) (A@) — A(—)
(ip) (iq) (A(D) + AT(—1)) (A(@) + AT (=)

g (A + A1) (A + A'(-)

— /d3q(27r)3
X B(—Eg) (A(=q) — A1) (A(Q) — AT(—]))

2@ ) (A + 41@) (4D + A1 (-D)]

_I_

_ / Bq2r)P B2 [A(-DAT(—) + AT(DA@)]
_ /dSq(Qﬂ')SEqZ [A(@)AWC]) + AT(Q')A((D} ((j‘—> —q in the 1st term)
= [ a4 o @ @) + ' (@)

Here, note that the t-dependence of A(q,t) cancels in H, and hence H is time inde-
pendent.

By using
a(@)a’ () = a (9)a(@) + (27)*0)(0),

we obtain
d3q 1
The constant term,

/ d3qEq%§(3)(O)
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is the zero-point energy. (This corresponds to the %hw term in the energy spectrum of
the harmonic oscillator, E = fw(a'a + 3).)

The zero-point energy cannot be observed (except through the gravitational force), so
we neglect it in the following.

In fact, there is an ordering ambiguity to quantize the theory from a classical
level. If we define the Hamiltonian by

1. 1 > 1
H =: /d3x {§¢2 + §(V¢)2 + §m2¢2} : caa’ :=:a'a: normal ordering

then there is no zero-point energy.

In any case, we have | H = / -3 a'(q)a(q)| (+ const.)

Therefore,

GT = ﬁ a a a
.0 () = [ (@ @'
(2725 (7-7)
= EpaT (P)
similarly [H,a(p)] = —E,a'(p) [

§1.4.4 Consistency check

Now that ¢(x) and H are expressed in terms of a and af, let’s do some consistency check.
(i) Heisenberg eq. ip(z) = [p(x), H].!
(ii) ¢(x) is a Heisenberg operator:  ¢(x) = ¢(t, ¥) = )¢ (t,, T)eHE=t0),
Problems
(a) Show (i) by using (1) and (6).
(b) Show that e!fta(p)fe~#t = a(p)Te'r! and efta(p)e ! = a(p)Te~"Er! by using (6).

(c) Show (ii) by using the result of (b) and eq.(1).

L(A typo here was corrected (May 27).)
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§1.4.5 vacuum state

The operator a(p) decreases the energy:

[X) = a@[X) —  a(@ap)]X)
energy Fx Ex - E, Ex - E,—E,

The ground state (lowest energy) state |0) is a state which satisfies

a(p)|0) =0

and Lorentz invariant

U(A)]0) =10},

§1.4.6 One-particle state

The one-particle state in §0.6 is given by (for free theory)

) = V/2E,a'(7)[0) -

normalization

(@1D) = /2E\/2E,{0a(q)a’ (9)|0)
= VB, 2E,(0/([ol@), o' ()] +a' (7) (@) 0)

(2m)3603) (p—q) —>0
= (2m)*2E,6% (5 — ),
reproducing the normalization in §0.6.

Lorentz transform:
From the Lorentz transformation U(A)¢(z)U(A)™ = ¢(A~x), we expect

Ul = ') -

where p’ = A7!p. (This may be opposite to ordinary convention.) Let’s show it.

LHS = /2E,U(A)a'())U(A) U (A) [0)
= V2E,U(A)d (7)U(A)~" [0)
RHS = /2E,a’(p/) |0)

So it is sufficient to show



§1.4.7 Lorentz transformation of a and a'

Let’s show ().

(i) First of all, for any f(p),

/ d?’pz—a)f(ﬁ) — [t ) 19)

This is because

12p°] o]
d(x — x;)
sey= Y 2 )
( x5 f (2;)=0 f (xz)
5(p° — 5
/ dp®5(p* — m?)|0s0 = / dp’ (p |W ) _ L

(ii) Therefore
_ d’p
o) = / (27)3\/2E,

= /d4p5(p2 _ m2)\p0>0 é? (&(ﬁ)eﬁp.m + at(ﬁ)eip.x)

(a(ﬁ)e_iw + aT(ﬁ)ei’”)

and its 4-momentum FT is given by

o(k) = /d4xeik“¢(a:)

= [ D0 =m0 Y552 () 2) 50— ) + () 2) 5+ )

-

— (27)3(k? — m?)\/2E}, (e(k‘J)a(/%’) + e(—kO)aT(—k)) .
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(iii) and its LT is

UMSRU(A) ™ = (2m)o(k* — m?)v/2B, (0(k)U (A)a(R)U(A) ™" + 0(~K U (Nal (~F)U(A)™") .

LHS — / A2 (A b(z) U (A) !

= /d4xeik'$¢(/\_1x)

B / dye! MO (K =A"'k)
= / d*ye™ Vo (y
= oK)
— 2m)3(k” — m?)\/2Ep (9(k'O)a(/€f)+e(—k'°)aT(—z€f)).

Using &> = k? and 0(k"°) = 6(k°) and comparing it with RHS, we obtain

U(N)a(k)U(A) " = \/l;j:]:a( ) M

§1.4.8 [¢(), d(y)] for 2 # y°
For z° = ¢ = ¢, we have [¢(z), ¢(y)] = 0. What if 2° # 377

From Eq.(1) and the commutation relations of a and a' in §1.4.2, we have
d®p . .
— —ip-(z—y) _ t+ip-(z—y) = iA(r —
ot).00) = [ G ( D) =iA( - y)

Properties of A(x):
(a) (O+m*A(z) =0.
(b) Lorentz invariant: A(Ax) = A(z).

(c) Local causality: A(z) =0 for 22 = (2°)? — 7 < 0 (space-like).
t

Alz —y) =

8y
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Among them, (a) is clear from the definition of A(z). (b) can be shown by using the equation
in (i) of the previous section §1.4.7:

d*p

A(z) = (—1) / WCS(PQ —m?)0(p°) (e — e?)

AW = (i) [ SEes? - w0 (07 o) @ = A

d . .
= (i) / ﬁf%qz —m?*)0(q°) (e A — A AD) Ty = Ag, d'p = d'q
s

= A(x).

Finally, (c) can be shown as follows. Fist,

On the other hand, for space-like = (z* = (z°)? — 72 < (), one can always Lorentz transform
it to a frame with 2’° = 0.

]_ o
For a Lorentz boost in the opposite direction to 7, 20 is transformed as 2"° = — (2" - 3-2).

-5

0

-
Taking 8 = — ¥, we have 2’ % — 0. Note that this is impossible for a time-like z,
x
0
x
where 2 = (2°)? — 2% > 0, because | 7| > 1 in that case.
x

Therefore, we have A(z) = A(z’° = 0,27) = 0 for 2% < 0.
on May 8, up to here. —————
on May 15, from here.
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§1.5 Interacting Scalar Field

Lagrangian

1. 1 = 1 A
L= [ (56 - 5(F0p - i~ 5.6t )
P s N———
same as free theory Interaction

(A : real and positive constant)

o(Z,t) «— m(Z,1)

0L

- 0(,t)
Equal-Time Commutation Relation

[6(Z, 1), 7 (7, )] = i6©(F - )

[6(Z, 1), (5, 1)] = 0

[7(Z,t), 7(y,t)] =0 (same as free theory)

= ¢(Z,1) (same as free theory)

§1.5.1 What is ¢(z)?
» In the case of free theory (A = 0),

e—iEpteiﬁ-a'c‘a(ﬁ) n Q/z‘ii‘vpje—iﬁfaT(ﬁ)>

o) = [ 40—
)= [ ————

(2m)3.\/2E,
We could exactly solve the t-dependence by using Fourier transform and the Klein-
Gordon eq. (O+ m?)¢ = 0.

» With the interaction, ¢(Z,t) =77

» The EOM is (see §1.3)

A
(O+m?) o(w) = —o(a)°
This is non-linear.
» Let’s try Fourier transform at ¢ = 0.
d3p o o
ot =0,%) = / e (C@e™ 4 Clpe )
(27‘(‘)3 N .
from ¢p=¢T
Defining a(p) by C(p) = a(p)//2E,,
T d’p 1 ip-& T —ipE
ot=0.2) - [ G 3 (P ), 1

Note that, at this stage, a(p) and a(p)! are just coefficients of the Fourier transforma-
tiomn.
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» In the Heisenberg picture,
o(t, @) = e (0, 7)e "

d3 1 . e . . o
:/ p (etha(p*)ef'LHtelp.x_i_ethaT(ﬁ*)esztef'Lp-w>.

@) \/3E,

» What happened in the case of free theory?

(free theory) [H,a(p)] = —E,a(p)
— etha<ﬁ>efth — a(ﬁ)efiEpt

This is the problem (b) of §1.4.4. An example solution is as follows:

define f(t) = e#'a(p)e "
then f(t) = e'i[H, a(p)]e
— eth(—iEp)a(ﬁ)e_th
(—1Ep) f(?)
Thus, f(t) = e 2 f(0) = e *r'a(p). [ |

» Similarly, el (p)e ! = af(p)eifrt. Therefore,

dp 1
(2m)3 \/2FE,

which is a linear combination of a(p) and a'(p).

(free theory) ¢(t, %) :/ <a<me—iEpteiﬁ.f_|_ aT(ﬁ)eiEpte—iﬁ-f>’

» However, with the interaction term,

H=H,+ %
~ '~ (a+al)!
— [H,a(p)] = —E,a(p) + O(a?, a%al, a(aT)2, (aT)g)

t

— efla(p)e”™  includes infinitely many a and a'.

— ¢(t,7) also includes infinitely many a and a'.
Thus, ¢(x) cannot be written as a linear combination of a and af.
— It cannot be considered as a field to create/annihilate just 1-particle state.

— It includes (infinitely many) particle creation/annihilation.
— We can’t discuss scatterings just in terms of ¢(z). —§1.5.2.
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Comment

Here, we have used [a, af] etc, but a and a' are just Fourier coefficients in Eq. (1).
What are these a and a?

o [a,al] =7

o H(t=0,7) = How is it written in terms of a and a'?
o H="

e [H,a)=?, [H, a']=?

In fact, a(p) is not uniquely determined by
dp 1
(2r) J2E

p

—

<1>H¢<t:o,f>=/ (a(p) + ' (—7) €77

For any operator f(p), replacing

a(p) = a(p) + i (f() + f1(=p))

does not change the above equation.
We will define a(p) more precisely later. (In “interaction picture”).

§1.5.2 In/out states and the LSZ reduction formula

» We want to define the in/out states in §0.6.

» In the free theory, one particle state is (see §1.4.6)

Ip) = V/2E,a’ () 10) .

where (see §1.4.1)

' (5) =

\/;T/d?’x e_ip'x —zgzﬁ(m) + Epgb(x))

3 ip-T
\/ﬁ/d:ve 80<Z>( ).
(faogEfﬁog—(ﬁof)g, o = 6)

ot

» We consider the same operator in the interacting theory.

ol (1) = P e 7Yy b(x),

—i
J2E,
0

a(RHS);«é 0 for A #0.)

which is now time-dependent. (
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» And we define the in/out states by

P1 - oy in) = /2B, a' (1, — 2E,,a'(py, —00 >
|1 -+ - G out) = \/2E,, a'(q7, +00) - 2E,, a' (g, +o0) |

where

Ty — = I —t d3 7ip-x<a_>

e Y T

t(= _ . —1 3 —ipmH

a'(p,+o00) = lim d’x e 0o o().

(p ) 29 to0 \/E 0¢( )

Comments

(i) One can think of operators with wave-packets:
@) = [ Epr@aln
=2
. p—p
with  f(p) ~ exp (—%)

and then later take ¢ — 0. See e.g., the textbooks by Srednicki [1] and/or
Peskin [2].
(ii) Here, the vacuum state |0) is the ground state of the full Hamiltonian H = Hy + Hiy.

(This comment is added after the lecture. See the comment at the end of this
subsection.)

» Then, one can show

~ LSZ reduction formula ~

(D1 -+ Pn; In|qi - - - gm; out)

LT[ /et o)
ﬁ{/dwe o (0 )

X (O[T (@(x) -~ d(wn) dy1) -+ A(ym)) [0)

e fo@ot) for a0 >y
T (4(2)o(v) { SR
T (d(x1)p(z2)p(x3) - - - ) = d(x4y ) P(@iy) P(T4y) for ) >ax; >a) >



» The LSZ reduction formula shows the relation between the S-matrix (infout) (see §0.6)

and the time-ordered correlation function (0|T (¢(x) - - -

)10).

» Let’s show it. First, by the definition of in/out states,

(LHS of the LSZ formula)

= \/2Ep \/2Eq1

-(0]a(qi, +00) - -

- a(gm, +00)a

"(pi, —00) -+ d )|0)

(p_;u —0

This is already time-ordered. Thus, we can put in the time-ordering operator T without

changing anything:

(LHS of the LSZ formula)

= \/2Ep \/QE!h o
(1)

» Next,

oo

a1 (7, +00) — af (7, —o0) = /

—0o0

N ,/2Ep

~(0IT (a(qi, +00) -+~

dt 0y a' (p,t)

a(Gm, +00)a

f(p1, —o0) - - - al (p;,, —00)) |0)

/00 dt 0y [\/_/d?’x eip“%)_g(b(x)]
/d4x o e_ip'x<8—o>¢($)>

'

—ip-x 82+E2) ( )
2

05+ p* +m?)é()

(
(
(08 Vw2
(

—ip-x

)ota)
— (g2 ?2 + m?)¢()
/d?’xe”p 132 -
/d3xew'£€2/d3qeﬂq‘f/ ((21:;3 9 f ()
/d?’xelﬁf/d?’q(—(jg)e_i‘ﬁ/ (;ijggeﬁgf(g)
[ea-prenrsm-a | (;if; @)
() [ 9@
[ (327 1@y |




and therefore

a1 (7, +00) — al (7, —00) = ﬁ / dz e (O 4 m?)(x)
or

ol (, —00) = al (7, +00) + ﬁ / e (m P

Similarly, one can show

a(p, +o00) = a(p, /d4:1: e (02 +m?)o(x)

m

» Substituting these equations to (1),
(LHS of the LSZ formula)

= ] .i. = 1
a(qi, —o0 a ,+00) +
(Q1 ) \/E/ (pl ) \/ﬁql
—) (—
time-ordering time-ordering
a(qr, —o0) [0y =0 (0] a®(p1, +00) =0

= (0] <i/d4x1 e (02 +m?) ) . (z/d% R (W +m2)¢(xm))
X (z‘/d4y1 e~ P (02 +m?) ) (2/d4y e (T2 4 m?) ¢ (yn)) 10)
= (RHS of the LSZ formula) B

———— on May 15, up to here. —
Questions and comments after the lecture: (only some of them)

comment: There is a typo at §1.4.4. The Heisenberg equation should be id(z) = [p(x), H]
instead of 1¢(z) = [H, ¢(z)].

A: Thanks! corrected.

Q: What happens to the LSZ formula, in particular the time-ordering, if you do a Lorentz
transformation?
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A: Good question. It is implicitly assumed that all the participating particles are causally
connected, i.e., (z; —y;)* > 0 (time-like). In this case, the ordering z7 > ¢? doesn’t
change, the proof can be done in the same way, and therefore the LSZ formula in the
Lorentz-boosted frame has the same form as in the original frame.

Q: Why a'(5,+00) = lim ——— [ d® e 7% 8y é(x)?

20400 4 /QE'p

A: That’s the definition of the operator a' (7, +00).

on May 29, from here.

Outline .
o free ¢ 514
quantization of . field
mteracting §1.5
o (0]T[¢---¢]|0)

e 1SZ §1.5.2

I (We are here.]
e S-matrix, amplitude M

§0.6

N

Feynman rule

e observables (o and T')

Comments

(i) In the derivation of the LSZ formula, we have used
a(p, £00) [0) =0
where |0) is the ground state (lowest energy state) of the full Hamiltonian H = Hy+ Hiy.

There is a subtlety here, but we will not discuss the details in this lecture.

Under certain assumptions (axioms) on the quantum field theory, such as “spectral
conditions” (A7 hILZEME), “asymptotic completion” (Wi 582 M), and “LSZ
asymptotic condition”, one can show the above equation a(p, £00)|0) = 0.

For instance, the “asymptotic completeness” (HEHI5E2ME) says that, the Fock space
spanned by the “in”-operators:

v — {10} (7 —o0) [0} (7 —oc)al (7, —oc) [0) -+ }
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and that by the “out”-operators:
v = {10y, al (7, +00) [0) , ol (7, +00)a (7, +00) [0) - }
are the same as the Fock space spanned by the Heisenberg operator ¢(z), V:

Vin — Vout — V

(For more details, see e.g.,

Kugo-san’s textbook [5] 77—V 5D & 15 1 Jugik—BR, K5EAR

and Sakai-san’s textbook [6] 5O & Fiw] PG, HHERE.

They are in Japanese. I have checked several QFT textbooks in English, such as
Peskin [2], Schrednicki [1], Weinberg [3], etc, but I couldn’t find the corresponding
explanation.)

In general, the operator defined by

al (p, £00) = d*re” Zp”:@ogb (x)

20—to00 4 /2

does not give the correct normalization for the 1-particle state.
(\/2E,a' (f, +00) |0) o |p), but normalization is not correct in general.)

One should either define the operator by
1

—1
— lim —
\/2 20400 4 /2Ep
(see e.g, Kugo-san’s and Sakai-san’s textbooks [5, 6]),
or rescale the field as

aT(ﬁ, +oo) =

/deeip"“"(@—O)(b(x)

o(x) = VZ¢,(x) (¢r(x) : rescaled, or renormalized field)

(see e.g., Srednicki’s textbook [1])
where

Z = |{pl¢()|0)*

represents how much the state ¢(z)|0) contains the one-particle state |p).
(Note that (p|¢(z)|0) = e®* and Z = 1 for the free theory.)

In this lecture, we do not discuss the renormalization, and take Z = 1 as the leading
order perturbation.
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§1.5.3 Heisenberg field and Interaction picture field

(0|T(p(x1) -+ P(x,))]0) < Now we want to calculate this.

l §1.5.2, LSZ formula

(out|in)

l §0.6

o, I
Idea: perturbative expansion in the coupling A. There are two ways:

e Here, we perform the perturbation in terms of the “interaction picture field”.

e Another way is the “path integral” formalism.

The two ways give the same result for (0|T(¢(z1) - - ¢(x,))|0).

> Let’s start from ¢(0, %) and ¢(0, %) at ¢t = 0. The Equal-time commutation relation at
t=01is

[6(0, %), $(0,7)] = i6®) (& — 7). ©

Define the Hamiltonian at ¢t = 0.

. . 2 A
H :/d3x <%¢(O,f)2 + % (w(o,f)) + %m2¢(0,f)2> +/d3x (ﬂqb((),f)‘*)

e

f{'() Hint

J/

Note that Hy and Hy, are defined in terms of ¢(0, %) and ¢(0,Z) at t = 0, and they
are time-independent.

» For ¢t # 0,
Heisenberg field P(t, 7) = el e(0, F)e M (evolved by H)
Interaction piecture field o1(t, T) = eHotp(0, £)e Hot  (evolved by Hy)

@
» Properties of ¢(x) and ¢;(x).

(i) From 2), Heisenberg equations are

QZ:S:Z.[H,gﬁ], QﬁZZ[H,Qﬁ],
¢r = i[Ho, 1], ¢r = i[Ho, ¢1].
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(ii) One can also show

{q’s(t, 7) = MM (0, T)e !

Q.ﬁj(t, f) _ 6iH0t$I(O, f)e—iHot

(deﬁne At) = e—thqg(tf)eth
then A(t) = e~ (<i[H, ] + §) e = 0
so A(t) = A(0) = 4(0,7). ®

¢r is similar.

(ii)" and

I
< =
—~ \.m
S-S
=
&

Note that, ¢;(0, %) = ¢(0,7) and ¢;(0, %) = (0, &) but ¢;(0, &) # ¢(0, 7).
(iii) The equal-time commutation relations hold even at ¢t # 0, both for ¢ and ¢;.
[6(t,7), 6(t, )] = €M[6(0,7), (0, 7)™ (- D)
_ €thi5(3)<f— Zj)e—th ( @ )
=68 (& — 7)
[¢I(ta f)? é[(ta g)] = eiHOt[QS(Oa f)? (b(O? g)]e_iHOt = 25(3) (‘f - 37)
(iv) H can be written in terms of ¢(t, ), and
Hj can be written in terms of ¢, (¢, Z).
H = ethHe—th

= e [ (330,074 + Zro0.2)t) e

_ /d%s (%qﬁ(t, 24 %aﬁ(t,f)“) (- @0)

Each time in the RHS is time-dependent, but the sum is time-independent.
Similarly,

HO — 6zHot]_Ioe—zHot‘

= eiHOt/d?’x (%é;(o, 7)? + % <6¢1(0, f))Q + =m?¢;(0, f)2> e HHot

= /d%; (%gzsl(t,f)? + % (%I(t,f))Q + —m"’m(t,f)Q) (- @d)



The RHS is (the sum is) time-independent.

Namely,
if written in if written in
terms of ¢(t, I) terms of ¢;(t, I)
Hy wWrong OK (t-independent)
H; wrong wrong
H = Hy + Hy, | OK (t-independent) wrong

(v) Equation of motion: From (i),
o(w) = i[H, )(x)]
=i [ @[50+ 5 (Fo)+ gm*olu) + 000", éte)

2

From (iv), we can take 2° = 4°. Then

Ist term: [p(y)?, (b(x)}mo:yo = 0.

o term: i [ Py {(wy))?,w)}

=i [ @5 (Vo) 9,lo(w). 60)] + ¥, [0(0). 9] - Fo(w))
—i [ @y Vo) 9,80 - 7

=i [ @y (-Fow) 09~ 7

I
<

)
BS
=

3rd term: 17

£0=y0

=

20=40

20=y0

=-—m?¢(z). (. [¢%d] = 0lo,d] + [6,0]0)
4th term: = —=¢(z)>.
Thus,
S A
¢: (VQ_m2)¢_g¢3
(O+m®)¢p = —%¢3
Similarly,
o1 = i[Ho, ¢1)
= .. (write Hy in terms of ¢;)
= (62 —m?)¢r.
AO+m?er =0 ¢ is a free field!
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§1.5.4 a and o' (again)

» ¢ satisfies (O + m?)¢r = 0 and therefore it can be solved exactly (see §1.4.1).

d3p

¢1(x) = /—(27r)3 2E,

(a(ﬁ)e_ip'x + aT(ﬁ)eip'x)

pO=Ep
where a(p) and af(p) are the expansion coefficients of the interaction picture field ¢;.
(We can also write them as a; and a}.)

Thus, the original ¢(0, Z) and ¢(0, Z) as well as Hy and Hy,; can be expanded in terms
of a and af.

~—"

$(0, %) = ¢1(0,7) =
e H. — o all written in terms of a, a'.
V="

—
substitute Hi = ---

» From the commutation relation of ¢;, ¢, and Hy, one can show the following relations
(see §1.4.2 and §1.4.3)

Note that the last two equations hold for Hy, not H.
» The state annihilated by a(p):
|0); a(p)|0), =0, Hy|0); =0 (Hp: normal ordered)
is NOT the ground state of the full Hamiltonian:

H|0); = (Ho+ Hin) |0); # 0
Hint ~ ¢411 ~ (a —+ GT)4

10}, # 10)

on May 29, up to here.
on June 5, from here.
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Outline

o f
quantization of ree. field
Iteracting

§1.5.3, §1.5.4

~

e (0[T¢---]|0) § 1.5.5 (We are here.)

e LSZ §1.5.2

v

e S-matrix, amplitude M

§0.6

v Feynman rule
e observables (o and I')

§1.5.5 (O[T (¢(z1)--- P(xn))|0) =7

We want to express it in terms of ¢; (a and a').
Step (i) ~ (vii).

0

n?

(i) redefine the space-time points such that 2% > 29 > -z

(O[T (¢(x1) -~ d(wn)) [0) = (Ol (21) - - - P()]0)-

(ii) o(z) =7
{qs(x) = M'(0, F)e "
¢1(!L‘) — eiHotgb(O,f)e—iHot
o B(x) = eiltemiHot g (1) giHot =it
= u(t)
o(x) = u' ()or(x)u(t).
(iii) |0) =7

I<0| u(t) — I<0| ez’Hote—th

= (0] (. Hyl0); =0)

Insert an identity operator:

1=10) (0] + ) _ ) (nl
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where |n) represent the eigenstates of H with eigenvalues E,, > Ey = 0. (The summa-
tion includes continuous parameter (integral).) Then

10 u(t) = 1{0] [|0 0|+Z|n nl]
= ;(0]0) (0] e ’H'f+z (0[n) (n| e~
= 7(0]0) (0 +Z (0|n) (n| e "Ent

The 2nd term oscillates for ¢ — oo. Thus, for regularization, we take

t — oo(1 — ie) (e >0,e —0)

then, e—zEnt N e—zEnoo(l—ze) x 6—Enoo~e =0

Therefore
lim /(0] u(t) = 1{0]0) (0]
t—o0(1—1i€)
Similarly
lm ul(=¢) |0), = [0} (0]0):.
t—o0(1—ie€)
Thus

10[0)(0]0[0}{0]0).
10[0) {0]0){0[0).
e

L A0Out (=)o),
it AL ur(—D]0)s ()

(iv) Substituting (2) (3) to (1),

(Olg(z1) - - - p(20)|0)
. 1
= A e D)

(0]0]0) =

X 10 u(t) - ul (t1) dr(wr) ulty) - ul(t2) dr(wa) ulta) -+ -+ - uf (tn) ¢r(an) u(ty) - u' (=t) |0),
—— —— —— —— —_—— —
(4)
v)
Ulty, ta) = u(ty)u' () (t > ty)
—_ eiHotle—iH(tl—tg)e—iHotQ :?
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It satisfies

Ut ) = 0

0 .

6_t1U(t1,t2) = —iH(t)U(tr, 1)  ———(5)
G Utta) = iU, 1) Hi ()

where
Hi(t) = etHot . oot
_ ’LHot/d3 A¢(O7f)4e—iHot

24
A
:/d3xﬂ¢l(l‘)4
d d . :
check (5) %u(t) — EeZHote—th
= eiHot(i[_[O _ Z'H)e_th
= Mot (—jH,, e~ Hot gitlot g —illt
= —iH(t)ut)
d
W) =
prl
il (t) Hr(t)

The solution of (5) is, if H;(t) at different ¢ are commuting,

X Ulty, ty) = exp (—i /: Hl(t)dt> :

but this is wrong. The correct solution is

Ult ts) =T {exp (—z /t " Hf(t)dt>]
_T g% (—z’ /: Hl(t)dt>n] S

T :3 (—z : H,(t)dt) n}

Let’s check it.

88 Ulty,tg) = Z

o
S|
.5

=

n—

D

n=0

S|
H
Eond
’l 3
Y
J
S
=
U
~
N———
o
L
[
.
N
l
S
S
QU
~
N———



Here, t; of Hy(ty) is larger than other ¢ (t; > t > t5), and therefore H;(t;) can be

moved in front of the time-ordering:
n—1
. (—Z/ H[ dt) ]

OO

0
a—tlU(tl, tg) = —ZH[<t1)

n= 1

— —iHI(tI)U(tl,Tb)
(vi) From (4),

_ o AO0IU 801Ut ) fr(22) - $r(2a)U(ta, —)|0)
(Olg(z1) - -~ p(x)]0) = t%olo(lfie) A0|U (¢, —)]0);

With (6), everything is written in terms of ¢;(z). Furthermore, the numerator is
time-ordered (¢ > t; >ty > ---t, > —t), and hence it can be written as

O06(z1) - d(a)|0) = i LTLOrE1) - 6r(@a) UL 8)UL, b2) - Ultn, =0))10)s

t—o0(1—ie) ]<0|U(t, —t)|0>[
L A0 b ealm) UG 1][0)s .
t—o0(1—1€) ]<0|U(t, —t)|0>]
where we have used U (ty,t2)U (t2,t3) = U(ty, t3).
(vii) Substituting (6) to (7), we finally obtain
A0[T ld”(xl) - 1) exp (—@' / Hf(t’)dt’)} 0);
O6(e2) - 0(e)l0) =l L
[<0‘T [exp <—Z /;t H[(t/>dt/):| ‘O)[
(8)

Everything is written in terms of ¢;(z) and |0),. By expanding exp(—i [ H;), we can do the
perturbation expansion as O(1) + O(\) + O(A\?) - - -.

§1.5.6 Wick’s theorem

» All the terms in the numerator and the denominator of Eq. (8) has as the following
form:

KO[T [@r(z1) -+ - dr(zn)] |0)s -
Define ¢(z) as follows.

— cl:”—pa e P La oiP
o= | Gy | e

[ J/ N J/
'

(z) = ¢l (2)
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Then

» Now we introduce “normal ordering”.

Normal Ordering

move o' to the left, and ¢ to the right.
N{or(z1)pi(w2)] = N [(p(a1) + ¢ (1)) (p(22) + ¢ (22))]
= N [@p(@1)p(x2) + " (21)p(22) + @(21)¢" (22) + ¢ (1) (22)

= p(z1)p(ws) + @' (21)p(x2) + W + o (1) (o)

(It can also be written as : ¢r(z1)¢r(z2) : by using “”.)

POINT KON [¢r(21) -+ dr(2,)][0)r = 0.
» Now we want to see the relation between the time-ordering and the normal ordering.

T{gr(e1) - br(ea)] <= Nlor(an) -+ dr(,)]
In the following, we write
¢1(x:) = i e(x;) = ¢
for simplicity. Let’s start from n = 2.
> n=2
For z > 5, T(p102) = P19

= (p1+#]) (2 + #h)
= o102 + 190} + Pl + 1}

= N(¢1¢2) + [p1, 3]

d*p Cipa d*p ipamal .
lor, o] = / L mimm [ P2 im0 T ()]

(27)*\2E,, (27)*\/2E,,

3
= [ e
(2m)32E,

For 2§ > 29, we have a similar formula with z; <> x5. Therefore,
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[
T(p12) = N(¢p162) + P12
3 —ip-(z1—x2) 0 0
@2:/( d°p {6 (ZE1>:L’2)

X 4
/ 2m)32E, e~ (@2—a1) (29 > 29)

K,
/ N\ po_ /7=
not an operator, pi= VPt m?

but c-number.

—
The symbol ¢;¢, is called “Wick contraction,” and it can also be written as

4 .

2m)4 p?2 — m? + e

(e>0,e—0).
Feynman propagator

\

p° is not necessarily \/p? + m?2.

It’s just an integration variable.

Check
4 . 3 0 .
/ olp4 . 22 .e—ip~(1'1—a72):/ dp?)/di 422 . _pip(@1—a2)
(2m)4 p?2 — m? + ie (27) 21 (p9)?2 — (p° + m?®) +ie
2
EP
Here, for € — 0,2
1 : 1 1

(p0)2—E3+ieNZ.p0—(Ep—ie) .p0+(Ep—ie)

which has poles at p® = E, — ie and p° = —E, + ie. (See Fig. 1.)

For 29 > 29, e=#"@1=23) 5  for p° — —ioo, so closing the contour at Imp? < 0 (red
line)

/ d3p dpo . 1 1 —ip-(z1—x2)
_Z . . e
23 ] 2 pP—(E, —ie) p°+ (E, —ie)

dp i 1 ~
_ P (Comi) s —— pmip(mi—a2)
/(27r)3 o I e

_ / &p 1 i)
(2m)3 2E,

PO=Ep

POZEP

*Here, E? — ie ~ (E, —i¢/(2E,))* and we renamed €/(2E,) as € in the right hand side. The overall
coeflicient of € doesn’t matter as far as e — 0.
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—E, + i€

Figure 1:

For 29 > 29, e=#’(@1-23) 5 0 for p° — +ic0, so closing the contour at Tmp? > 0 (blue

line)
/ d’p % dp° 1 1 —ip-(1-3)
—_— _Z . .
2n)3 ) 2 pU—(E, —ie) p°+ (E, — ie)
dp i 1 4
= . (427 P (@1—22)
/ (2r)32r —-E,—E, ( ) -

Y
pO=+Ep

3
— / d p Leiip'(x27x1)
(2m)3 2E,
where we have changed the integration variable p— —p’in the las line. Therefore
/ d4p i e—ip(zl—u) _ / d3p y e—lip'(m—a:z) (.I? > xg) -
(2m)* p? — m? + i€ (2m)32E, e~ (@) (2§ > 27)

on June 5, up to here.
Questions and comments after the lecture: (only some of them)

Q: Can you explain how the time-ordering operator acts in Eq.(6) in §1.5.57
A: OK. Let’s write Eq.(6) in §1.5.5 again:

Uty 1) = i %T K‘Z /: H[(t)dt) "]

n=0
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where I changed the order of the summation and the time-ordering.

Now, consider the term for n = 2, for simplicity. It has the following form:

gt (- i) | = [ (- o) (- i)

Note that H;(t) = [ d*z(A/24)¢;(t,T)*. The integration variable ¢ and ¢’ take values
between t; and ty. In the region where t > ¢/, T[H(t)H;(t')] = H;(t)H(t'). But in
the region where ¢ > t, T[H;(t)H(t')] = H;(t')H(t). (See the following figure).

t/

Uty ta)|na =

ty p---

>t

t>t

2

tg tl
Thus

U(tl,t2)|n 9 = |: / H] dt/ H[ dt + / H[ dt/ H] dt:|

- 5(_@2/ dt/ dt’ H(t—t’)HI(t)HI(t’)+9(t’—t)H1(t’)HI(t))

Now, the 2nd term is the same as the 1st term (¢ <> t’), and hence

Ut t2)lns = (— /dt/ At H, (1) H ()

Similarly,
U(t1, ) nes = ( / dt / ' / A" H (8 H (8 H (1)

t(n—1)

Ulty,t)]n / dt/ dt/ dt” - / dt™ H () H () H;(t") - - Hp(t™)
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comment:

A:

comment:

Note that the factor 1/n! cancels the combinatorial factor of exchanging variables.
Summing over all terms, we have the explicit form:

Uty t) = nf% %T K—z /: Hf(t)dt) q _ nf% RN

Using the above explicit expression for U(ty,t3)|,, one can easily show that

19) .
a—tU(tl, t2)|n = _ZHI(tl)U(tla t2>’n*1
1

0 .
a—U(tl, tg) = —lH](tl)U(tl, tg)
tq

You should have explained what is € when introducing the Feynman propagator. € > 0
and € — 0, right? (You didn’t write it explicitly).

You are right! Thanks! I added an explanation in the note, and I will comment on it
in the next week.

There is a typo in the formula of the Feynman propagator. et (®1=22) should be
efip'(xlfxz)'

: Thanks! corrected.

——— on June 12, from here. ———

quantization of field

e S-matrix, amplitude M

e observables (o and I')

free
interacting

§1.5.3 ~ § 1.5.6 (We are here.]

OIT[¢- - - 4]|0)

e LSZ §1.5.2

W

§0.6
¥ Feynman rule

J

Comments on the lecture last week (corrected/added in the note on the web)

(i) There was a typo in Feynman propagator. et (@1=72) _ e=ip-(@1—22),
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(ii) In the formula of the Feynman propagator, the parameter € is a small constant which
represent the contour in the complex plane. ¢ > 0 and ¢ — 0.

(iii) In the case of 2 > 29, the contour should be closed at Tmp° > 0.

(iv) The time-ordering Tlexp( [ H;)] in Eq.(6) in §1.5.5 can be expressed more explicitly.
(See the lecture note on the web.)

>n=3
For 2§ > 29, 29,
T(¢10203) = d3T(d192)
= ¢3N(d1¢2) + ¢3€,f;;52
= 03N (1002) + PIN(1h2) + ¢3@2

[ [
{ng(¢1¢2> = N(b16a93) + Gr6sds + drdadrs
¢£N(¢1¢2) = N(¢1¢290§)

1 1 1
= N(¢1¢2¢3) -+ ¢1¢2¢3 + ¢1¢2¢3 + ¢1¢2¢3 .

(Similar for 29 > 29, 29 and 29 > 29, 29.)

> n—4
I I o
T(Pp1020304) = N(D1020304) + P102N(304) + P103N(d2004) + - ';+§51¢2¢3¢4 +-
6 t;;ms 3 t;;ms
» In general
e Wick’s theorem ~

T(é1- - én) = N(¢1 - - )
—
- Z¢i¢j N(¢1--++-dn)

pairs

+ > &j@f N(¢1--: -+ ¢n)

2 pairs ikt
1 (.
Z Gi9j -+ - GpPq (n = even)
4 o pairs — —
> bbbt (n= odd).
”T_l pairs
N J

(Problem. Prove it by induction.)
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» Therefore,

Z %J'"'Q'%_%q (n = even)
{OIT [pr (1) - - by ()] [0) = { ™22

0 (n= odd).

§1.5.7 Summary, Feynman rules, examples

» Let’s calculate the cross section for 2 — 2 scattering in the ¢* theory,

1 1 A
— woho 0242 0 7t 4

n P3
D2 P4
» From §0.6,
o(p1,p2 = ¢¢) = ! /d<I>2 | M(p1, p2 —>p3ap4)’2 Xl
2E1 '2E2|U1 —U2| 2
identical
final state laentica
par‘?i?:les

Consider in the center-of-mass frame
D3 - R
P11 = —P2

4 0 P2 P3 = —Da

N
S

11| = [p2| = |pa| = [Pl
s Ey=E,=E;=E,

~ VIFP T

o6



Then

p1 D2
|U1—’UQ| = | — =

P
— 2_
E, B

=25

2 _ d’ps d*py 45(4) 2
WlMP= | Gryag, | @rper, o0 Q_ptp=p=pIlM]

( In the center-of-mass frame, this is simplified as. .. [Problem: Show it.] )

1 ps [dQ, / /2” /1
-2 [ = . A0 = d d cos 6

» Therefore,

1 1 s}
oo = 00) = g [ GIME (1),

» On the other hand, M is given by

(p3, pa;out|py, po;in) = (2m)6W (py + p2 — ps — pa) - iM(p1,p2 — p3,pa)  —(2).

and (ps, ps; out|py, pe;in) is given by, from the LSZ formula §1.5.2,

(p3, pa; out|py, po; in)

n

_ H |:i/d4xi€ipi-x¢ (Di+m2):| « H {i/dﬁlxieJripi-wi (Di_i_m?)
i=1,2

i=3,4

J

We call it ‘?LSZ factor”
X (O[T (9(1)(w2)6(w5)() ) 0)

where, from §1.5.5,
OFT |outan) -+ anteexp (i [ ortor) |10
0T |exp (=i [ p610)*) | o1

<0|¢($1) T ¢($4)‘0> =

» Namely,

(p3, pa; out|py, po; in) = (LSZ factor) x (3).

We can expand it with respect to A.
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> O(A\°%) term of (3)’s denominator = {0[0); = 1.

» O(A\°%) term of (3)’s numerator = [{0|T(¢pad304)|0)1. (5 = b1(z;)).
from Wick’s theorem in §1.5.6,

/o — 1 —
= P1OP20304 + P1020304 + P1P20304
1 3 l]oe——eo3 1\ 3
+ +
2> <4 Je— e/ 2 \4
where
[ d4 i )
P12 = / (27:;4 2 T:LQ n ieeﬂp-(mf:rz) = Dp(l’l - 562).

Now, (LSZ factor) X Dp(x; — z9) =7

» In general,

(LSZ factor) X Dp(z1 — x2)

= i/d%ieﬂp’”“ (0; + m?) Dp(x; — )

J/

e

[ ) e
(2m)4 p? — m? + ie
= —i0W(x; —y)

= TPy (4)

POINT) LSZ factor cancels the Dp(x; —y) factor of the external line.

—
» In the case of @100 = Dp(x1 — 3), both x; and x4 are at the external lines, so

i/d4xie_ip2'$2 (Dg + mz) i/d4xie_im"“ (Eh + m2) Dp(z1 — x3)

[

e

e—ipl'm
= z‘/d%ﬂ‘imm (—pf + mz) e~ P12
= 0!
= 0.
Ty Ly

POINT) If two external points are directly connected, ® * =0
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» Thus, O(\°) term in (3)’s numerator = 0.
» O()\) term in (3)’s numerator
= AOFT (Sr0un0nl=0) [ atugionsuo0, )00 6= oty = o
(4 pairs = 105 combinations)

= terms including egt._ext (=0)

1 3
1 1 1 1
> < Y 1020304 - ¢y¢y¢y¢y ete, 9 terms
2 4
1 3
[—— 1 —
}Q < P1020304 - ¢y¢y¢y¢y etc, 72 terms
L
2 4

HIITIH

+ ¢1¢2¢3¢4_2—4 d ydydyb,9, 4! = 24 terms (in total 105 terms)
1 3
Y 24 f)\ A introduced for thi
of — = — was introduced for this.
a-2u"
2 4

= (—i}) /d4yDF(5U1 —y)Dp(xy — y)Dp(r3 — y)Dp(4 — y).

» Thus, from (4),
(LSZ factor) x (O(A) term in (3)’s numerator)
= (_Z'/\)/d4y€—ip1~y6—ip2~ye+ip3~y€+ip4~y

(—iA)(2m)*6™ (1 + p2 — p3 — pa) (5).
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» Since

=0 =)

~ =
(outlin) = (LSZ factor) x (3)’s numerator  O(X?) + O(A) +O(X?) + - --
- (3)’s demominator o 1100+ ,

(5) is the leading term of (out|in).
(ps, pai out|py, py; in) = (—iX)(2m)*6W (p1 + pa — ps — pa) + O(N?)
» Thus, from (2), we eventually obtain the amplitude at the leading order,

iM<p17p2 — p37p4) = —i\ + O()\Q)

» and substituting it to (1), the cross section

ds)
o (pryp2 = 66) = — 1/—\M|2

1287 B2 | 4w <o

=1 =\?
2
T 1287 B2

2
=25 x 104)2GeV 2 (Gev)
Ey
2
1.0 x 10793 2em? ( SV
Ey
>
-~ ’ Feynman rules for M‘ ~
iM = diagrams = >< N
(1) diagram with % =0.
bi Dj
(2) external line 4‘6 = 1.
pi
(3) vertex >< = —i\.
(cont’d)
- J
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» Higher order terms:
O(M?) term in (3)’s numerator

—7)? A A
= [0|T <¢1¢2¢3¢4( 22) /d4yﬂ¢3/d4224 )|0

(6 pairs — 10395 combinations!) term in (3)’s numerator

t. t.
= terms with % —0
Di P
+ terms with bubbles ><
2

+ terms with loops at external lines §<
1 3

+ other loops >£>2< etc
2 4

» In general, terms with loop diagrams are often divergent, and requires “renormaliza-
tion”. Here, we just give qualitative discussion.

» Terms with bubbles are, together with the leading order term,

XX g X X))

In general,

(3)’Snumerator:< >.< + >><< 1+ 8 + + )

|\ —

fully connected

all bubble diagrams
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On the other hand,

(3)’s denominator = £0|T (exp [—@/%f}D 10y, = ( 1+ 8 n n )

N J/

all bubble diagrams

Therefore, all bubble diagrams canceled out between numerator and denominator.

» Loops in the external line

— AQ_é + L + -+ (all these diagrams)

4
2 —m?

The factor Z is absorbed by the field renormalization. (In general, the mass "m” here
is also different from the parameter "m” in the Lagrangian.) We do not discuss the
more details here.

Feynman rules (cont’d)

(4) Ignore the bubble diagrams.

(5) We can also ignore the loops in the external lines if we take into account the
renormalization.

» The other loops.

1 3
Example: >y<>z<
2 4
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The : ><>< s term in (out|in)
2 4
= (LSZ factor) x the L ><>< term in (3)’s numerator
2

3
4
= (LSZ factor) x the ; >?;<>Z<i term in (0|T (¢1¢2¢3¢4( /d4 _(;5 /d4 _¢ )

—ix\ 2 | || || |
= (LSZ factor) x % <2—Z4)\) /d4y/d4z ¢1¢ﬂy¢y¢y¢ﬂz¢z¢zm3¢4

x 12 (1,2 <> y* combinations)

x 12 (3,4 <+ z* combinations)
x 2 (remaining y* > 2° combinations)

X 2 (replacing y <> z

)
= (LSZ factor) x %(—i)\)2/d4y/d4z Drp(x1 — y)Dp(z9 — y)Dp(w3 — 2)Dp(x4 — 2)Dp(y — 2)°

—— on June 12, up to here. ————

Questions after the lecture: (only some of them)

Q: What about a diagrams like 1 ><> C>< 3 99
2 7Y Ny

A: Good question! In fact, after renormalization of fields are take into account, this

class of diagrams also corresponds to a diagram with Xt €Xt. anq its
v B
i j

contribution to iM is zero.

comment: There is a typo in the calculation of the normal ordering in§1.5.6. o' (z1)¢(29) —
e (z1)p(22).
A: Thanks! corrected.

—— on June 19, from here. ————
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From (4), (LSZ factor) x Dp(z; — y) = eT?¥ and hence

The : ><>< 3 term in (out|in)
2 4

= (LSZ factor) x %(—i)\)Q/d4y/d4z Dp(xy — y)Dp(zy — y)Dr(x3 — 2)Dp(x4 — 2)Dp(y — 2)?

(—M)2/d4y/d4z R o e e ey D (TR b

(—i/\)Q/d4y/d4Z 6—1171'ye—1p2'y6+zp3-ze+zp4-z

4 ‘ 4 ~
" / d’q L i) / @t L i)
(2m)* g2 — m? + ie (2m)* 02 — m? + ie

1
2
1
2

Here
1 P q s 3
, N
/d4y€—1(p1+p2+q+€)~y — (271')45(4) (p1 +potq+ f) \ /
) ) z
/d4ze+z(p3+p4+q+€)-y = (2m)*0W (ps 4+ pa + ¢+ 0)
2/ NN
D2 12 D4

which represents the | momentum conservation | at each vertex.

Thus, the ! ><>< s term in (out|in)
2 4

B 1(_M>2/ dq i / die i
2 (2m)4 g2 —m2 +ie | (2m)4 02 — m?2 + e

x (2m)*0™W (py + pa + g + 0)(27)* 6@ (p3 + pa + g + )

1 dq i i
RSN . 9145 e
2( A / (2m) ¢ —m? +ie (—p1—p2—q)* —m?+ ieg )0 AP ps )

~
the factor in (2)

and finally, from (2),

1 d4 . .
The * 3 ferm in iM — —(—z'/\)Q/ d R ! — .
5 4 2 2m) g2 —m? +ie (—p1—p2—q)2 — m? +ic

D1 q p3
Yy z

2 / — \ 4

b2 —P1—P2—¢ b
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~|Feynman rules (cont’d)

(6) Momentum conservation at each vertex.

1
7) Internal line o s = —— .
@ Y p? —m? +ie

.

(8) Loop momentum should be integrated by /

d*p

(2m)*

(9) Multiply the “symmetry factor” (such as 1/2 in the above example).

J

» Note that, if there is no loop, there is no symmetry factor and all coefficients cancel:

. 3
1 4
Example: 2 — 4 scattering. 5
(
2
6

(LSZ ( > /d4 /d42 P19 - ¢y¢y§|by¢y C.0.0.0, - (?3¢4¢5¢6

x 4! (y contraction)
x 41 (z contractlon)
2y 2)

= (LSZx)(—i\) / dty / d*2Dp(x, — y)Dp(xy — y)Dp(xs — y)

X Dp(xs — 2)Dp(xy — 2)Dp(xs — 2)Dp(y — 2)

1
(p1 + p2 — pe)? — m? — i€

~
the corresponding term in iM

= (—i))?

» Different diagrams give different terms: for instance,

3
1 Y
The 4 terminiM = (—i))?
2 > 5
6
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§2 Fermion (spin 1/2) Field

: To construct the Dirac Lagrangian
L =(ir" 9, — m),
solve the EOM (Dirac equation)
£ = (ir"d, — m = 0,

and quantize the Dirac field.

§2.1 Representations of the Lorentz group

§2.1.1 Lorentz Transformation of coordinates (again) (see §1.1.1)

> ot — 't = AM, 2V, where

1
BoAV -1
g,uz/A pA o = Yvo, 9 = 1
-1
— AupgmxAya = Gpo
— ATgA=g.
» Exmaples
around z, y, 2 axes
1 1 1
AP 1 cos 6y —sin 6, cosfs; sinfs
v cosf; sinb, |’ 1 ’ —sinfs cosfs

—sinf; cosf, sin 6 cos 0 1

in the z, y, z directions
coshn; sinhm cosh 7o sinh 7 cosh s sinh 73
AP sinhn; coshn, . 1 1
v 1 " | sinhnp cosh 1y ’ 1
1 1 sinh 73 cosh s
el +e™"
coshn = =
2
n_ =N
sinhn = ‘ 26 =pBy=1? -1



§2.1.2 infinitesimal Lorentz Transformation and generators of Lorentz group (in
the 4-vector basis)

» Consider an infinitesimal Lorentz Transformation:

AF, =01, + W, (wh, < 1),
or A=T+w.

where [ is the identity matrix. (I changed the notation from the blackboard.)
Then, from ATgA = g,

(I+w)lgl+w) =g
Swlg4+gw=0 (up to O(w?))

"W Gou F Gup W =0
—— ~—

I = W
gl/pﬁ‘)pu
Wyp

SoWoy = W anti-symmetric

0 a b 6 independent degrees

W — |0 0 d e 1
wel-b —=d 0 f .
3 rotations and 3 boosts
—c —e —f 0

» In fact, the matrix w”, = g"”w,, can be written as

0 m 2 13 Note that

m 0 03 —0, 0 00
w7y = Woy = Woy, Wo; =1 = —Wio-
Ny —0s 0 0, g Wo 0 0 n 0

ns 0, —6, 0 W'y = gVwj = —wiy, —wi; = €l = Wy

(1)

and the rotations and boosts in §2.1.1 can be expanded as

rotation around z axis

1 1 0
B 1 B 1 0 9
A= cosf; sinf; | 1 + 0 o +0(81)
—sin#; cosb, 1 -0, 0
boost in the z direction
coshn; sinhn, 1 0 m
A~ sinhn; coshm _ 1 L |m 0 +O(R)
1 1 0
1 1 0
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» The matrix w”, in (1) can also be written as

why, =i [0:(J:)", +n:(KG)" )]

where
0 0 0
0 0 0 —
e N N I FRCAOE I §
1 0 —1 0 0
0 —2 0 —1 0 —1
w |1 0 uo 0 no 0
(K1> v 0 ) (K2) v | = 0 ) (K3) v 0
0 0 —1 0

These 6 matrices are the generators of the Lorentz group in the 4-vector basis.
» Any group elements can be uniquely written as
A = exp (i60;J; + in; K;)
up to some discrete transformations. (cf. §2.1.A)

We omit the proof.
For example, for 6; # 0,60, = 03 =n; =0,

A= exXp (Zeljl)

0 0 1
0 =1 0 1
= exp 0 6, z;ﬁ 0 06, cosf; sinfd;
-0, 0 " -0, 0 —sinf; cosb,

For 8“771 <K 1,
A= Lisa +i (0;0; + 0 K;) +O(0;,m;)?
~————

w

» The generators J; and K; satisfy the following commutation relations

[Ji, Jj] = i€iju ( Lie algebra )

H{ f}fg]]z %”feKkJ of Lorentz group SO(1,3)

In §2.1.3, we will see the same commutation relations hold for generators of
general representations of Lorentz group.

Problem. Show the above commutation relations.
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§2.1.A Other (disconnected) Lorentz transformations

» The above discussion implicitly assumes that A is continuously connected to the iden-
tity element / by infinitesimal Lorentz transformations (LT's).

o —

o I+w, TSeA=(14w) (1 +w)(l+w)l
I. [—i—wl

But there are also LTs which cannot be connected to I by infinitesimal LTs.
» From g, A" Ay = guo,
(i) detg- (detA)*> =detg .. detA =41,
(ii) goo = gooA’0 A% + gi; A0 g
1= (M%) — (Aig)? - (A%)2 =1+ (Af)? > L.

» From (i) LTs are divided into two sets:

det A =+1; “proper” LTs
det A =—1; “improper” LTs

e Proper LTs form a subgroup of Lorentz group.
(If det Al = det A2 = 1, det(AlAg) = 1)

e Proper LTs and improper LTs are disconnected.
(Infinitesimal LTs cannot make det A =1 — det A = —1.)

» From (ii) LTs are also divided as:

{AOO > 1; “orthochronous” LTs

A% < —1; “anti-orthochronous” LTs

e Orthochronous LTs form a subgroup.  (Problem: Show it.)

e Orthochronous LTs and anti-orthochronous LTs are disconnected.

det A = +1 detA = —1
1 1
Ay >1 connected to I = 1 connected to P = 1
> 1 —1
—1 —1
0 —1 1

A%y < —1 | connected to PT = 1 connected to I = 1

-1 1

» In the following, we consider only proper-orthochronous (det A = +1 and A% > 1)
LTs, which are connected to I. (They form a subgroup.)
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§2.1.3 Lorentz transformations of fields, and representations of Lorentz group.

» In §1.2, we have shown the scalar action

5= [ = [ ateciofe). 0,000
is invariant under the LTs of the scalar field,

¢(z) = ¢'(z) = (A" '),

We’d like to generalize it as

Oy(z) = ®(2) = Dop(N)®y(A'2)| a,b=1,---N
or (') = D(AN)®(x) |, ¥ = Ax

» The matrix D(A) (N x N matrix) must be a representation of the Lorentz group.

D(A2A1> = D(A2)D<A1)

(Proof:) For two successive LTS,

r— ' — 2"
Ay Ao

O’ (2') = D(A)P(x)
O"(2") = D(A)®(2") = D(Ag)D(A1)®(x)

On the other hand,

.I'” = AQ.CE/ = A2<A1$) = (AzAl)iC
.'.(I)N(l’”) = D(AgAl)CI)(ZE)

Thus

D(AoAy) = D(A2)D(Ay) W

» What kind of representations does the Lorentz group have?
(<= What kind of fields (particles) are allowed in relativistic QFT?)

scalar field : D(A) =1 (1 x 1 matrix)
spinor field : D(A) =77 (2 x 2 or 4 x 4 matrix. (We construct it now!))
vector field : D(A) = A%, (4 x 4 matrix)
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» Consider an infinitesimal LT
AF, =00 + Wy,
parametrized by 6 small parameters w,, < 1 (or 6;,n;, < 1).
For w,, =0, A = I;x4 (no transformation), and
Dop(A) = Dop(I) = Sap (N x N matrix)

Thus we can expand D(A) as
D(I‘Fw):[NxN"—%wWMW, MHY — — v+
1
or Dab<I4><4 + w) = (5ab -+ §ww [M“V]ab

where the N x N matrix [M*"”] , are the 6 generators of Lorentz group in this repre-
sentation.

» The 6 generators M satisfy the commutation relations of Lorentz algebra. Let’s show
it.
on June 19, up to here.

Questions after the lecture: (only some of them)

Q: What is the factor 1/2 in the equation D(I + w) = Iyxn + %WW,M/W ?

.3
i
A: Here, the summation goes as D(I + w) = Inxn + 3 Z Wy MM
w,v=0
Since both wy, and M" are anti-symmetric, woi M°" = wigM'? etc. Therefore,
its explicit expression is

D(I +w) = Iyxn +i (w01M01 + woe M + wos M* + wis M + wys M + w31M31)

———— on June 26, from here. ——

Last week,

’§2.1 Rep. of L. group.

62.1.1 ot — a* = A* a”

§2.1.2  AF, =", + wh, = 6", +i[0;(J)", + mi(Ki)")

62.1.A

(§2.1.3  @'(z') = D(A)®(z)

i
D(I+w)= I 42> wuM"+0(w’)

NxN NxN 2 KV NxN

today —
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» Consider three successive LTS,

D(A3A2A1) - D(A3)D(A2>D(A1) (1)
with
Al = I —|— w
A2:I+u_] a}uy,w#y<<1
A3 =]—w
Then,

LHS of (1) = D<(I - w)(H@)(HW))
= D(I +& — w? — Wi + w — wiow)
— I+ %(@ — w? — W + W) M + O(@, w?, wi)?

RHS of (1) = D(I —w)D(I +©)D(I + w)

— (1 - %@M + (’)(w)2> (I + %@M + O(w)2> (I + %wM + O(w)2>

Comparing both sides

O(1),0(w), O(w) egs. — trivial
O(w?), O(w?) egs. — no closed relations among M*.
) 1
O(ww) eq. — %(—w@ + @w) g M*P = 2 (WM - oM — oM - wM)
(2)

Now,

4 x [RHS of (2)] = wu M"©,e M7 — 0, MP w,y M*
= Wy W (MM, MP]
4 x [LHS of (2)] = 2i(0w — ww)asM*?
= 272(@017(&75 — wofy(ZJ’Y B)Maﬁ
= 2@'(@(1797‘%55 - wmgw@gg)Maﬁ
= 20 Wy Wy ( g7HMP” —g"P MH7)
=1 Wupe ((—g""M™ — g M") — (n<v) (W = —wiy)
= i 0y (g™ M — g M 4 7M™ 4 g M)

anti-symmetric under p <> v, p <+ o.
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Comparing the w,,@,, components in the both sides, we obtain

[Mluj, Mpo'} — (gupMVO' _ gl/pMMO' _ g,uUMl/p _|_ gVO'Mup) (3)

Lie algebra of Lorentz group

Defining
D(JZ) = ——GZ]kM] — MY = _szkD(Jk) (4)
D(K;) = M®

The same as
)0 hesein§2.1.21

» Recall that M* <= D(J;), D(K;) are the generators defined by
1
D(I4><4 + W) = Inxn + éw,uuM'uya

which represents infinitesimal rotations and boosts. Using the notation wy; = n; and
w;j = —€;10; for the 6 small parameters (see §2.1.2), the above eq. becomes

D(Lixa +w) = Inxny +1[0:D(J;) + 0, D(K;)]
which is the same form as the infinitesimal LT of coordinates in §2.1.2.

» Now, define

(D(Ji) = iD(K))

(Note that D(B;) # D(A;)T, because D(K;)" # D(K;) (see discussion later).)
Then

[D(A;), D(A;j)] = ieijr D(Ay)
(5) <= | [D(Bi), D(B;)| = i€y D(Bg) ——(6)
[D(A;), D(B;)] =0

This is the algebra of SU(2)xSU(2), and therefore we can classify the representations
of Lorentz group by using representations of SU(2).
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» Before going ahead, let’s summarize the discussion so far:
o LTs of fields: ®'(2') = D(A)®(x) with 2’ = Ax.
e For infinitesimal LTs, D(A) = D(Iyxq +w) = Inxn + %WMVM”V
e Three equivalent ways of representing the 6 generators:

M"w <« D(J;,),D(K;) < D(4;),D(B))
satisfying (3) <= (5) — (6)

e So far, D(A), M*, D(J;), D(K;), D(4;), D(B;), are all generic N x N matrices.
» What’s the generic representation which satisfy (6) 7

[D(A;), D(Aj)] = ieijr D(Ay)

We know this from QM !!

[jm 5;} = iGijkjk-

Starting from this, we could show that generic representation is

spin-j state : |7, m)

1 3
i =0.—.1.—.---
J T g

(.

2541
A.2 . — (i 1 .
where 47 |j7m> J(Jfr Jjym)
J3 |j7 m> =m |.]7m>
» [NOTE| In QM, we have used the fact that j; are Hermitian, jf = j;. Here, D(A,))

and D(B;) are not Hermitian, but we can derive similar result assuming
finite dimensional representation. Let’s see this.

» Representation of “A-spin”.
For simplicity, we denote

A; = D(4)) (N x N matrix).

Define

A% = AT+ A+ A3,
A:t - Al :I:ZAQ

4



From (6), we can show

[A%, Ag] = 0 (i),

[AQv Ai] = (ii)a

(A3, Ayx] = £ A, (iii),
A? = A3(As+ 1)+ A_A,

= As(As— 1)+ AL A

(iv).

From (i), there exists a simultaneous eigenvector of A* and As; @, ,,.°

A? Oyl =2 Pap
Ag q))\,,u = U CI))\“u N
NxN

Then, from (ii) and (iii), the vector
Dy 1 = APy,

satisfy

AQ(I))\,,U,:I:I = )\(bA,,LL:tl
A3®y a1 = (p £ 1)y 1.

Continuing further, the vector @, .+, = (A1) P, , satisfy

AQ(I))\,;L:I:n = )\(I))\,u:l:l
AS(I))\,uin = (M + n)q))\,uil-

Now, assuming finite dimensional representation, there must be upper and lower bounds
on Aj’s eigenvalue

Hmax = [+ Ty,
Hmin = M+n—7

with

(v),
(vi).

3(At this stage, since A% and Az are not Hermitian, the eigenvalues A\ and p are not necessarily real
numbers, but we will see they are real. I thank the student who pointed out this!)

A_D, =0

sHmin

{A‘F@)\,#max = O
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From (iv) and (v),

A0 = (A Ay +1) +A- AL ) Dy,

—A — Umax (Hmax“l‘l) —0

(VH) )

A= ﬂmax(ﬂmax + 1)

Similarly from (iv) and (vi),

A= ,umin(,umin + 1) (V111)7
From (vii)—(viii),
(,U/rnax + ,umin)(,umax — Hmin + 1) =0

Since fimax — Mmin = M4 + n_ = n = non-negative integer (and therefore real),
fmax — Mmin + 1 > 0, and we have fiax = —fimin. Together with piax — fimin = n, we
thus have

JR— n JR—
,umax - 2 - umll’l
n/n
A=" (— 1)
2 \2 +
We have obtained the irreducible representation of the “A-spin”.
4 N

a

AN = A(A+1) W
Az®AW = ¢ o)

where

1.3
A=0,-,1,2,.-
727 ’37

a=—A A+l A-1A

(2A+1) (;(r)mponents
N /

» Since we have two SU(2)s, D(A;) and D(B;), any irreducible representations of Lorentz

group are parametrized by a set of two numbers:

(A, B) A, B = integer or half-intetger

» The corresponding field is

(1)53,3) (2A+ 1)(2B + 1) components
a=-A—-A+1,---A-1A4
b= -B,—B+1,---B—1,B
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transforming as

D(A%)8Yy" = A(A+ 1)@l

D(A3)@l " = adly”

D(B*3}y"” = B(B+1)8l}"” ™)
D(B3)®;" = bl

where D(A?) = 322 D(4;)%, D(B%) = Y7, D(B;)? and we omitted the transforma-

tion of the argument x.

(A, B) =(0,0) scalar fields
(A,B) = <O, 1) , <1 O) spinor fields

2 2’
11
(A,B) = <—, —) vector fields
272
» Scalar fields

A=B=0,

a=b=0

P00 1-components

D(A;) = D(Bi) =0

,',D(A) =1+ %WW MW — T
=0

S (7)) = D(N)D(z) = D(x)

§2.1.4 Spinor Fields

1
» Consider fields with | (A, B) = (O, 5) :

(2A+1)(2B+1) =1 x 2 = 2 components
oM p=—1/2.1/2.

Thus, D(A;), D(B;) <= D(J;), D(K;) <= M" and D(A) are 2 x 2 matrices.
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o; : Pauli matrices o1 = (1 1) ;02 = (z _Z) 03 = (1 _1> :
Q)
- F @ — ,
or (@21/2> 01 00
1
D(By)® = ( / _1/2> ®, D(By)® = (0 0) ®, D(B-)® = (1 o) P
Thus,

(D0 = D(A) + D(BY) = %ai
LD(KZ-) = —iD(4;) +iD(B;) = z%a

4
MY = —5Cijk0k
e 12
M% =i—o;
\ 2"

» Denoting the 2-component field CIDI()O’l/ 2 as

1
<O, 5) field: |€o(z) a=1,2|
its Lorentz transformation is given by
&(a') = D(A)o"€s(a),
B
D). = exp(i6:D(J;) + inD(K:) )

oL 1\ °
=e Wiz 0 — 1504
XP 20 772 )

e D(A) for a rotation around the z-axis

1 ip 103 ‘

e D(A) for a boost in the z-direction

el o ) ()




Comment on the unitarity.

1
D(J;) = 50i are Hermitian, D(J;)" = D(J;),

1
but D(K;) = 2201 are anti-Hermitian, D(K;)" = —D(K;).
Thus, the spinor representation of the Lorentz group D(A) is NOT unitary in general.

(For instance, the rotation (i) is unitary, D(A)TD(A) = I,
but the boost (ii) is not unitary, D(A)TD(A) # 1.)

In general, there are no non-trivial finite dimensional unitary representation
of the Lorentz group.

Is this OK?
— No problem, as far as Lorentz transformation of states are-unitary:

{Btey——ABHHA A e=+{Bte)- have proper transformation.*
(Maybe more on this later, if we have time...)

on June 26, up to here.
on July 3, from here.

Last week,

e §2.1: Rep. of L. group.
° §2.1.3: ®(2') = D(A)®(x),

generic irreducible rep. ®(z

AB) = A .. A—1,A,b=-B,---B—1,B.

Jarp
e 62.1.4: Spinor fields, ®(z ),()O 1/ )(x) or &,(x). 2-component field.
D(A) = exp(iby(0:/2) — mi(0i/2)).

today —

1
» Similarly, for spinor fields with | (A4, B) = (5, O) , /20 from (6) and (7),

1 g 1
D(AZ) = 10‘1’ D(‘]l) = 50—2' MY = _ieijkak
2 — ] | )
D(B) =0 (2x2) D(K;) = _ZEJZ. MO — _ngi

4(corrected after the lecture)
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» To summarize, there are two kinds of 2-component spinor fields with (A, B) = (0,1/2)
and (1/2,0), and their Lorentz transformations are given by

(4, B)

1 1 1 1 1
(0, 5) Y — Di(A)Yr = exp (iei—oi - 771‘—01') Yr = (f + 2'91501' M50t ) Vi

1 1 1
<§, 0) : Yr = Dr(A)Yr = exp (29 —0; + iz Uz) VYR = ([ + Z'Qzan + 771501' + - ) YR

(sorry that I changed the notation & — 1y,.)
(We omit the argument = and 2’ = Az for simplicity.)

Their infinitesimal transformations are

51/}L - ( — ) O'ﬂ/}L

1
g = é(zei + ni)oivr

» Note that

From (9), ] = (—29 m:)o; vy

by using eo; = —oe where € =i0oy = (_01 é) ,

G(SwL = 5(-291 — 771')607; ¢L
0(evpy) = 5 (i +mi)oi(edy)
Thus, €] transforms in the same way as g in (9).

» Comment on spinor indices

The indices of 2-component spinors are often denoted by undotted and dotted labels:

(VL)a,  (¥YR)a
together with invariant tensors e, s , and extended Pauli matrices aZ 5
In particular, the spinor contraction such as € = 1,£* = 1,e*?&5 are very convenient
(once you get used to it), but in this lecture, we do not use them.

(see below).
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§2.1.5 Lorentz transformations of spinor bilinears

» We have seen the Lorentz transformations of spinor fields ¢, and ©¥g. In order to
construct a Lorentz invariant Lagrangian, let’s consider Lorentz transformations of
spinor bilinears, such as

Q”’ﬂ/’R = (Y71, ¥12) (iﬁ:) = Y7 1YR1 + V1 URe.

1”:‘731/% = (Y11, V12)03 (zg) = Y1V — YioWVLe.

In general, we can think of various combinations

{0 vl vl x (2 x 2 matrix) x {ur, ¥n, 07, 03}

They can be classified according to SU(2)xSU(2).

1
i (0.2

1
¢R,¢Z"‘ <§a0>

66

1 1
» If there is only v, field, the possible bilinear terms transforming as (O, —) ® (O, —)

are

YT (2 x 2 matrics) - ¢z

Among them, ©Te 4 is Lorentz invariant.

v d(dre ) = (0 )edr + vpe(dvr)

— G(z’ek — )Tl > ey, +le (%(iek - m)amﬁ) (.- (9)

1

= 5(29k — nk)wf(a,;fe + EO'k)wL
——

=0
=0

» If there is only ¢y field, similarly, w}{e Y% is Lorentz invariant.
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» If there are both ¢ and ¥g field, we can also think

Pl - (2 x 2 matrics) - 9y..

Among them, wgz/zL is Lorentz invariant.

L O(hn) = (00R)vL + YR (0v)
= (%(—Wk + Uk)@/JLUk) Wi, + Uk (%(wk — nk)UWL) (. 9)

Comments

(i) In terms of SU(2)xSU(2), the above terms, ¥Te 1y, w}be Yy and %Tng correspond

to
p)e()- oo e

this term.

(ii) One might think that

Wl = (b, ) (_01 (1)) (z;) = Yuthy — Yty

vanishes. However, if 1); are anti-commuting (as in quantized fermion field),
1Py = —1hp1hy and hence T e does not vanish.

(iii) ¥Te+y and w;ze Y% terms correspond to Majorana mass terms,

and 2@@/} 1, corresponds to Dirac mass term.

If we consider a charged fermion (such as electron and positron), only the Dirac
mass term is allowed.

Field @ is charged (under conserved symmetry)

<= Lagrangian is invariant under ® — e*®.

YTe by is not invariant under 1y, — ey,

while @DL@DL is invariant under v, — e, Yr — €Yp.

In the following we consider a charged fermion and hence only the Dirac mass

term @Z)LzﬁL.
(Neutrinos may have Majorana mass term (maybe Majorana fermion). Still un-
known.)

[0
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» Similarly,

Vi, Yhebr, wiew

are Lorentz invariant, corresponding to

G,o)@(%,()): @ @ (1,0)

this term.

We only consider the Dirac mass term wsz.

69

» Consider

1”% - (2 x 2 matrics) - ¥g.
There are 4 independent combinations, which can be taken as
YRR, Yhoibr (i=1,2,3).

They transform as

S(Whvr) = (0vh) R + ¥ (5Yr)

= nk(1/};r%¢k¢R)7

3(hoitn) = (0UR)oitbr + Uhoi(5¢n)
= ... (using (04, 05] = 2€;5,01 and {0;,0,} = 0,05 + 0,0, = 25Z-j]>
= 0i(Vir) + €l (Vhv0R).

Combining them

1”#/151 0 m 2 3 ¢1TQ¢R
5 @3011?}% _|m 0 05 —0, %qufl (o
Whoybr n —03 0 6, Whoabr
@/)LU 3UR ns O =6 0O ﬂgff 3UR

This is nothing but the transformation of Lorentz 4-vector! (See eq.(1) of §2.1.2.)

O'N:(I,O'i):((l] (1))(? [1))((2) _OZ)<(1) —01)

the above equation can be written as

S(Who"r) = w, (Vho vR)

Defining
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» Similarly, defining

5’” = ([, —O'i)

One can show

S(}atbr) = wh, (P} )

Comments

(i) In terms of SU(2)xSU(2), the above argument means
1 1 11
(03)2(02)-(33)

(ii) For finite Lorentz transformation, they transform as

i (2')o" U (a') = VR(z) Dr(A) 0" Dr(A)r(z) (- dp(a’) = Da(A)gr(x))
= N ()0 (@),

is a Lorentz 4-vector.

namely
Dgr(A) 0" Dg(A) = A*,0”
where

2
AF, = exp (i6;J; + in K;)

1 1
Dgr(A) = exp (i9k§ak + nk—ak)

with (J;)*, and (K;)* given in §2.1.2.
Similarly,

LN (@) e, (@) = ¢l (x) Di(A) " Di(A) g ()

S

e

A+, GV

= AP (2) 4 (x).

(iii) The other combinations, ¥¥eot1pr and 1&26”61&2, also transform as Lorentz 4-
vector, but we do not consider them. (They are not invariant under v, —

eYr, Yr — €PpR.)

» Now we have obtained Lorentz scalars and vectors from spinor bilinears, ready to
construct the Dirac Lagrangian.
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§2.2 Free Dirac Field

§2.2.1 Lagrangian

» In §2.1.5, we have seen

Wi,  Ylog

are Lorentz invariant. They can be the Lagrangian terms.

» On the other hand,
vhotvr,  Yiatyr

are Lorentz vector. They can be combined with 0, to make the Lagrangian (more
precisely, the action) Lorentz invariant. For instance,

[z vhoro,un
is Lorentz invariant, because
[z ki@ ointo) » [ do v @) g, 0ita)
— [ @t il @or e )

0
(' = Az, change of integration variable. 8; = ax’ﬂ)

_ / d'2’ Pt () Dr(A) 0", Dr(A) i (x)
:/ﬁwﬂmeﬁMM>
( ) 0 oz’ 0

ke Qg Qx't QxP

:/&ngw@www

I

=AY, 0, da'= d49:)

» We can also think other combinations with d,, to make Lorentz invariant terms, but

— 8M(w£a“@/)R): total derivative and not a viable Lagrangian term.

— (Qﬂﬂ}%)a“w}g: equivalent to IDEU“@M/JR up to total derivative.
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» Similarly,

/ d*x bl 50,1,
is Lorentz invariant.

» Combining them all, we obtain the Lagrangian of the free Dirac field:

L = ipho"0,bm + i 50,0 — m(Pln + vlvg).

where we have added a factor of ¢ in the derivative term to make the Lagrangian
Hermitian:

(w);f%auauwR)T = _i(au¢R)TUM¢R
= iwka"@uwlg + total derivative

The above Lagrangian can be written in terms of four-component Dirac spinor
and gamma matrices (Dirac matrices)

L= V(iry"d, — m)V¥

= @) | (iova, “0%) = (" )] (1)

where
Dirac Spinor: ¥ = Yr
VR
. i ot
gamma matrices: Y = (5“ >
— I
wwazwﬁﬂaQ ):whﬂy
———— on July 3, up to here. —————
on July 10, from here.
Last week,

§ 2.1 Rep. of L. group.
§ 2.2 Free Dirac Field
§ 2.2.1 Lagrangian L = V(iyd, — m)V

announcement
[extra class (fffig#) on July 31. (to finish the quantization of Dirac field) ]
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» The ~ matrices

satisfy

{74} = 29" Laxa Clifford algebra in 4d

Problem: Show it.

Comments:

(i) There are representations (bases) of v matrices which satisfy {y*,v"} = 2¢*1.

(e.g., Dirac rep. 7° = (I —I) Y= (—a' Ui))

m
The above rep. v = ( 7 ) is called Weyl (chiral) rep..

ok

(ii) We sometimes use a notation “Feynman slash”:

¢ = Vuaua

for a four vector a*. The Dirac Lagrangian is written as

L=T(id —m)V.

(iii) A convenient identity
v 1 v
¢¢ = ’V“a;ﬁ ay = 5{7”)7 }auau
=g¢"I aya, = a’l

» The Lorentz transformation of the 4-component Dirac field is given by

- (3]
(7 ) ()
= exp (5™ ) 002)

where, from Dy p(A) in §2.1.4, the generators S are given by

G0i 50i '
_%Ui . .
L (block-diagonal: reducible rep.)
gii — [ 2%
_§€ijk0k>



They can be written as

—1

s
1

[ 7]
and satisfy
[S,U,V’ Spo’] _ (gupsya o ngSua o guasup + gl/asup) ]

» Note that Ut and ¥ transform as
U't(2") = Ui(z) exp (—%wNVST“”> :
V' (2) = Ul (2) exp (—%wMVST“”> ~°
= 0T (2)7° exp (—%wMVS””) (.0 ST = 4 0gmy
= V() (—%wij"”)

Thus, UT¥ is not Lorentz invariant (note that ST # SH) while UV is Lorentz
invariant.

§2.2.2 Dirac equation and its solution

» From the Lagrangian £ = W(i) — m)¥, the EOM (Euler-Lagrange eq.) is

0=20, Lg — iﬁ
5(8, 1) SUl,

=0—[Y(id—m)] , V.

‘| (i@ —m)¥(x) =0  Dirac equiation

Commnets

) )
(i) The other Euler-Lagrange eq. 0 = 0, (m£> — EE gives the same eq.

(ii) In terms of 2-component spinors, it is

—ml 0”9, (Y1 0
ZE’“@M —ml ¢R -

(The mass term mixes left- and right-handed spinors. For massless fermion, 1,
and ¢ are different particles.)
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» Let’s solve it. First of all, if U(z) is a solution of Dirac eq., then it also satisfies the
Klein-Gordon eq.

0= (—id — m)u(id — m),. V.

( aa _mz)a,c\:[j(t
~—

=0r0,l

= (O4+m?)Y,.

» Asin §1.4.1, consider Fourier transform of W(z) with respect to &,
U, (Z,1) = / d*p U, (p, 1)
From (O + m?)¥,(z) = 0,
[ (0l + Tult) @ + )7 =0
(inverse FT) — U, (p,t) + Eﬁ(f/a(ﬁ’ t)=0

U7 1) = ua(P)e P + w, (et Pt (ua(D), wa(P) : 4-component spinor)

S (7)) = /d3p (ua(ﬁ)e*iEpt + wa(ﬁ)eJriEpt) iPT

_ /d3p (u(Z(mefip-z + wo(—p) e+z’p-w> — (1)

pO:Ep
= v, (P)

» Eq. (1) satisfies the necessary condition ((J + m?)¥,(x) = 0, but not sufficient. From
Dirac eq.

0 (’la — m)ab\Ifb(x)
[ (= myamEe ™+ (<= mlan e )

(p — M) (B)e B + (=1°po — 7 (—pi) — m)wyvy(—P)e ot

(inverse FT) — 0

This should be satisfied for any ¢. Thus,

{@—me@:f W= E)
(=p — m)ap(p) = 0
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i.e., u(p) and v(p) are eigenvectors of p with eigenvalues m and —m respectively.

u(@) |

=m

y u(p)

v(p)

= —m

y v(p)

> In fact, the eigenvalues of the matrix p are
det(p —xl) =---
— xr=m,m,—m,—m,

(2% —m

2)2

corresponding to two independent u(p) and two independent v(p), satisfying (2).

» We can also think the “helicity” (= projection of the spin onto the direction of mo-

mentum):
1 (p-&
h(p) = == R I
0 =557 ("7 5.5)
whose eigenvalues are +1/2. Since [p, h(p)] = 0, simultaneous eigenvectors of p and
h(p) can be taken:
ui(p) u_(p) | vi(p) v_(p) puy(p) = muy(p)
P m m -m  —m e.g., 1
h(p)| 1/2 —1/2|-1/2 1/2 h(p)uy(p) = §U+(p)

» The explicit form of u(p) and v(p) can be written as

P F Ip] ni> <
uL(p) = y  U+\P) =
= (Vo) o
with
NI, 0, —i
0. = 1 pr—ap”\ _ [cosze ¢
21 —p3) \ 1-p° sin
. 1 1-p" \ _ sin ¢
N 2(1 —p3) \ —p' — ip? —cos Set?

satisfying (p'- &)ne = %|pln<, nl'r]s/ = 04y

They are normalized as

Us(p) s (p) = 2mdy
_Qméss’ ;

(p)vs ()

(P)vw(p) =0

Us
Us
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VP° £ |p] ent

—/P° F |71 enl) ’

pt = p'/|p] = sinfcos ¢
p? = p?/|p| = sinfsin ¢

P’ =p°/|p] = cost



and satisfy

S u(p)u(p) = p - m

s=+

» To summarize, there are four independent solutions to the Dirac equation,
V() = / &’p (wy(p)e™™, u—(p)e™™®, vi(p)et™*, v (p)e™) o . .
I

§2.2.3 Quantization of Dirac field

L=V(ij) —m)V.
conjugate 5[» . 0 et R
U, = Iy, = S (Viy®), = U] (=i07)

Comments

(i) U, — Mg, =iV}

oL
but then, U* «— 7 (Ilg+, =

One should do the quantization of constrained sysytem with “Dirac bracket”.

=0777)

OL(q,q

In general, if det (—
94¢;0q;

) =0, p; and ¢; are not independent.

In such a case,
Poisson bracket quantization

\ Dirac bracket /

Here, we skip the details and do naive quantization with ¥, and Ily,.

(ii) When ¥, and Ily, are anti-commuting, right-derivative and left-derivative gives
opposite sign. Here, Iy, is defined with <_right—derivative%

(If A and B are anti-commuting, (BA)G% = B, while 5%<BA) = —B.

‘Quantization with Commutation relation vs Anti-commutation relation

U, ¢ Ty = 00
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Quantization with equal-time commutation relation

(W (), M (9)]ao=yo = [Wa(), i¥](y)]ao—yo = i6®(Z — §)das

does NOT work. Instead, quantization with equal-time anti-commutation relation

{\Ila(x)a H\Pb(y)}x0=y° = {\Ila(x>> i\I’Z(y)}xo=y0 =i6® (f - g)(sab
works. Let’s see it.

» First of all, expand the W(x) with the solutions of Dirac eq.

—ip-x +ip-x

us(p)e ", wvi(p)e

—ip-x +ip-x
\I]a(‘r) / 27T \/2—%2 Qs musa P +ds(15>7)8,a(p)e P )pozEp '

s==+

t _ —i—i T T T —ip-x
\Ija(’x) _/ 27T \/EZ musa b +ds(mvs,a(p)e P )pOZEp .

s==+

Here, ¥(x), as(p), and ds(p) are the quantum operators. At this moment a,(p) and
ds(p) are just expansion coefficients.

» The following can be shown:

[\IJQ(IE), \DZ(y)]x():yo = 5(3) (f - g)éab
others =0

¥

[a,(9), al(@)] = (27)*6@) (7' — @),
[d.(p), di(q)] = (2m)36B) (5 — @)y — (1) pe------- » (problematic)
others 0

Y
AL

others =0

3

{ar<ﬁ)’ al((j)} = (27)35(3)(]7_ ®5T5
{d.(7),d}(@)} = @n)*6F(F—qdrs  —(2) poomom--- » (OK)

others =0

{{\Da(a:), W) baomyo = 0O — )b
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on July 10, up to here.

(In order to finish the quantization of Dirac field, I will have an extra class (fifia#) on
July 31. It’s after the exam and the reports, and irrelevant to the grades. . .)

——— on July 31, from here. —————

» Let’s first show (1)’ = (1) and (2)" = (2). Hereafter, we use a notation

4B} — {[A,B]:AB—BA
{A,BY = AB + BA

to discuss the two cases simultaneously.

» First of all, from (1)’ (2), [a,a} = [d,d} = [a,d} = 0, and therefore [V, U} = 0.
Similarly, [¥T, T} = 0.

» The remaining is [V, ¥}, and

—» N . d3p d3q
0.2 000 = [ G | G
33 (lon(P), al (@} war (P ()7

r=+ s=%+
), (@) s O )P

( using (1), and performing /dgp and Z)
r=+

om > tas(@)u) (@) = [(¢ +m)7u
from §2.2.2 > vas (@], (q) = (¢ — m)7]as )

/ 2n)? 25 (€TED[(f +m)y°]uy + e TED[(§ —m)70],)

d3 1 i (T—7 7 i
_ /(27)32_%6 TED(0g) — v'q; + m +7°q0 — 7 (—q:) — M) )ap

¢ 1 vap o0
= | g
=68 (& — )5, M

» Thus, (1)’ = (1) and (2)’ = (2) are shown.

» The other way round, (1) = (1)’ and (2) = (2)’ can be shown, by the following
steps:
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(i) By using the explicit forms of u(p) and v(p) in §2.2.2, show that

ul (P)us(P) = 2E,0,
v (P)vs(P) = 2E,0,s

(7o) = 0 &
vi(P)us(—p) =0
(ii) Using (3), show that
0lP) = = Yl ) [ Ere )
P q pO=E, (4)
ds(p) = ;Ep ;U;a(ﬁj/dgm‘e_ip.m\lja(x)

\

pOZEp
(One can also show that the RHS is independent of z°.)
(iii) Using (3) (4), show (1) = (1)’ and (2) = (2)".
» So far we have shown (1) <= (1)" and (2) < (2)".

» On the other hand, the Hamiltonian is given by
H = /d% (ma¥ — )
9
(note that Ily is defined with right-derivative, and hence H— = 0.)
= /d3x (NfT\I/ — U (i) — m)\11>
=0
= / B iU
— .- (using (3))

- [ 225 Y (o) - ) )

s==

Note that
(i) this is the case both for quantization with [e, e], (1)<=>(1)’ and that with {e, e},
(2)=(2)’,

(ii) and there is a minus sign in front of d'd.
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» From (5) and (1)’(2)’, one can show:

[H, al(p)] = Eyal(p)
[H, as(p)] = —Epas(p)
[H, d{(p)] = —E,dL(p)
[H, d(p)] = Epds(p)

for both of the cases with [e, e], (1)<=>(1)" and {e, e}, (2)<=(2)".

» Now, if we would quantize with [e,e], (1)<=>(1)’, then d}(p) would decrease energy.

H(al(@) X)) = (d@H + [H.d(7)]) 1X)
— (Ex — B,)(di(7) X)),
and one could construct a state with infinitely negative energy.

(i 10) = (B B~ By (i 1)),

J

— —00
Note that, we cannot change the roles of d and df, because
(@), d'(@)] = (2r)*5? (5 - @),

fixes that d' (d) is the creation (annihilation):

AE(F) — ' (Fd(F) = (27)*600),
et )] - ||ao )] = eorso)ixix) > o

(If we would define d = d, d' = d, and define the vacuum by d[0) = 0, then
—||d"(p) | X) ||* > 0, inconsistent!)

» On the other hand, if we quantize with {e, e} (2)<=(2)’, we still have
(H,d}(p)] = —Epd{(p)
[H, ds(p)] = Epds (D)

but now we can exchange the roles of creation and annihilation operator.

b'(p) = d(p)
b(p) = d'(p)
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because
{d@),d'(@} = (2m)°6P (7 - q)
=dd' +d'd
= b'b+ bb
={b(q),0"(p)}

and also we can define the vacuum state by ]0) = 0.

Comment

b(p) |0) = 0 means that, in terms of original d and df, d'(p) |0) = 0.

In terms of the original “vacuum” [04) with d(p)|0;) = 0, the vacuum |0) can be
understood as

0 o T @) 104) .

all p

which leads to d'(p)]0) = 0 because d'(p)*> = 0. This is related to the idea of the
“Dirac sea”.

» The Hamiltonian then becomes

1= [ G5B Y (e ) )
- = —b.((P)
= +8l(7b.(7) — (22)%59(0)

= [ 5558, (e + 0. ) - [ @ B0
+

(2m)s "

sS=
We neglect the (infinite) constant term, as in the scalar case.

» To summarize, quantization with anti-commutation works, and we have

a N

00 = [ G ¥ (@) )

(2m)3\/2E, p—
{a.(p), al(2)} 2m)20) (5 — q)0re

— — - (
x T 0—,0 — (3) .:C —_ b
{“M>ﬂﬂwh—y PIE= I ) B@) = @S- D6

others =0
others 0

= [ e X (w09 + 007
N
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The anti-commutation relation implies Fermi-Dirac statistics;

2
al(p)al(q) = —al(q)al(p), in particular (ai(ﬁj) =0 ‘Pauli blocking

» Particle and Anti-particle

U(1) Symmetry: ¥ — We™
— Current: j* = U~

— Charge: ) = /d3xj0

_ / DS~ (al(Pa@) — bEHE)  (+constant)

(2m)3 &
and hence
{[@, al(p)] = +al(p)
Q. b (#)] = —bi(p)
Namely,

e al(p) increases the charge by one. (Particle creation)

e bi(p) decreases the charge by one. (Anti-particle creation)

» One particle state

[V, o) = 2Epai(ﬁ) |0) : particle
s 5, 7) = /2E,bL(p) |0) : anti-particle
Normalization:
(W; 5,r|; @, 8) = /2B /2E,(0]ar(§)al(7))0
= /2E,\/2E,(0] {a.(P)al(])} —al(P)a.(p))0
N—_——
(2m)363) (F—q)6r-s
= (27T)32Ep5(3) (ﬁ_ @51"5-
Similarly (; 7, 7[; @, s) = (27)°2E,6) (7 — @)6.

Lorentz transformation:
(check it by yourself. .. )

» (That’s all for this semester. Thank you for your attendance!)
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