

ニュートリノレス二重ベータ崩壊の λ 機構

岩田順敬(関西大学) Yoritaka Iwata (Kansai University)

Ref.) Y. Iwata, N. Shimizu et al. Phys. Rev. Lett. 2016 J. Terasaki, Y. Iwata, Phys. Rev. C 2019 S. Sarkar, Y. Iwata, P. K. Raina, Phys. Rev. C 2020

Half-life & nuclear matrix element (NME)

Theoretical methods nuclear matrix element (NME)

ISM(殻模型計算=相互作用するフェルミオン模型)

IBM(相互作用するボソン模型) QRPA (準粒子乱雑位相近似) HFB, EDF(対相関入り平均場計算) GCM(生成座標の方法)

Feassler, J. Phys. Conf. Ser. 2012.

Contents

* Shell model research [overview]

- * Shell model calculation for DBD of Ca48
- Large scale calculation by Tokyo group -
- * Right handed weak boson ?
- Summary

Brown, Horoi, Senkov, Phys. Rev. Lett., 2014

Recent trend on ISM calculations: 1"more structure" = new paths

PRL 113, 262501 (2014)

PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2014

Nuclear Structure Aspects of Neutrinoless Double- β Decay

B. A. Brown,¹ M. Horol,² and R. A. Sen'kov^{2,3}

¹Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA ²Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA ³Department of Natural Sciences, LaGuardia Community College, The City University of New York, Long Island City, New York 11101, USA

76Se - 74Ge - 76Ge

Recent trend on ISM calculations: ②Hadronic current by EFT

PHYSICAL REVIEW C 98, 035502 (2018)

Shell model study of using an effective field theory for disentangling several contributions to neutrinoless double-β decay

> Mihai Horoi^{*} and Andrei Neacsu[†] Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

[λ mechanism] see also ... Simkovic et al., Front Phys. 2017

 $\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{01} g_A^4 |\eta_{0\nu} M_{0\nu} + (\eta_{N_R}^L + \eta_{N_R}^R) M_{0N}$ $+ \eta_{\tilde{q}} M_{\tilde{q}} + \eta_{\lambda'} M_{\lambda'} + \eta_{\lambda} X_{\lambda} + \eta_{\eta} X_{\eta} |^2.$

the left-right symmetric model with R-parity-violating SUSY model

Ordinary case

Recent trend on ISM+ calculations: 3 Ab-initio (IMSRG usable for ISM)

PHYSICAL REVIEW LETTERS 124, 232501 (2020)

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

 J. M. Yao^{1,*} B. Bally,^{2,†} J. Engel^{1,2,‡} R. Wirth^{1,8} T. R. Rodríguez^{1,3,||} and H. Hergert^{1,4,¶}
 ¹Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
 ²Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
 ³Departamento de Física Teórica y Centro de Investigación Avanzada en Física Fundamental, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
 ⁴Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA

Recent trend on NME calculations:

Y. Iwata, N. Shimizu et al. Phys. Rev. Lett. 2016

Large scale ISM calculations Including 2 major shells (Tokyo)

1) Adjustment of interaction for "double beta decays"

[EXPERIMENT] F. Videbaek *et al.*, NPA (1986) 2nd 0⁺ state of ⁴⁸Ca was pointed out to be proton-excitation state

proton excitation included in 2nd 0⁺ state of ⁴⁸Ca:

"0.22" is still too small to be pronounced as the proton-excitation state cf.) the parity difference between the *sd*- and *pf*- orbits.

Our idea is to adjust the gap between the sd- and pf- shells to reproduce the experimental excitation energy of 2nd 0⁺ state of ⁴⁸Ca

2) Shell gap

[EXPERIMENT] F. Videbaek *et al.*, NPA (1986) 2nd 0⁺ state of ⁴⁸Ca was pointed out to be proton-excitation state

By reducing the shell gap of Ca40 about 2MeV \rightarrow 5.8 MeV Slightly modified interaction <u>SDPFMU-db</u> made from <u>SDPFMU</u>

Two neutrino process

[Experiment]: Yako et al. PRL (2009)

Contribution from IVSM (isovector spin monopole) should be included in experiment. However, it is not quantitatively well known.

NME value in large model space

$$\left[T_{1/2}^{0\nu}\left(0_i^+ \to 0_f^+\right)\right]^{-1} = G^{0\nu} \left[|M^{0\nu}|^2\right] \left(\frac{\langle m_\nu \rangle}{m_e}\right)^2$$

Inclusion rate of 2nd major shell components : ⁴⁸Ca (22%), ⁴⁸Ti (33%) **sd + pf**

⁴⁸Ca (~2%), ⁴⁸Ti(~2%) pf + sdg
This result shows that
It should be necessary to take into account sd shell

Due to $(1/1.34)^2 \sim 0.56$, it means that

the half-life is almost halved

for the same neutrino mass.

Summary of NME for $\mathbf{0}_{\nu\beta\beta}$ of $\mathbf{48}$ Ca

Comparison of neutrinoless double beta decay NME (with ranges)

Present status for DBD candidates

Phys. 80 (<mark>2017</mark>) 046301

There has been **no significant difference** for these 5 years.

~ 2 to 3 times difference still exists

Calculation of nuclear matrix element

$$M^{0
u}_{lpha}=\langle f| au_{-1} au_{-2}\mathcal{O}^{lpha}_{12}|i
angle$$
 f, gt, t

$$\mathcal{O}_{12}^{GT,\omega GT,qGT} = \tau_{1-}\tau_{2-}(\sigma_{1}.\sigma_{2})H_{GT,\omega GT,qGT}(r, E_{k}), \qquad M_{\nu} = M_{GT} - \frac{M_{F}}{g_{A}^{2}} + M_{T},$$

$$\mathcal{O}_{12}^{F,\omega F,qF} = \tau_{1-}\tau_{2-}H_{F,\omega F,qF}(r, E_{k}), \qquad M_{\nu\omega} = M_{\omega GT} - \frac{M_{\omega F}}{g_{A}^{2}} + M_{T},$$

$$\mathcal{O}_{12}^{T,\omega T,qT} = \tau_{1-}\tau_{2-}S_{12}H_{T,\omega T,qT}(r, E_{k}), \qquad M_{\sigma F}$$

$$S_{12} = 3(\sigma_1 \cdot \hat{\mathbf{r}})(\sigma_2 \cdot \hat{\mathbf{r}}) - (\sigma_1 \cdot \sigma_2), \ \mathbf{r} = \mathbf{r_1} - \mathbf{r_2}$$

$$H_{\alpha}(r, E_k) = \frac{2R}{\pi} \int_0^\infty \frac{f_{\alpha}(q, r)qdq}{q + E_k - (E_i + E_f)/2}$$

Included: finite nucleon size (FNS) higher-order currents (HOC)

 $M_{\nu\omega} = M_{\omega GT} - \frac{M_{\omega F}}{g_A^2} + M_{\omega T},$

 $M_{1+} = M_{qGT} + 3\frac{M_{qF}}{g_A^2} - 6M_{qT},$

 $M_{2-} = M_{\nu\omega} - \frac{1}{9}M_{1+}$

Calculation of neutrino pot part

$$H_{\alpha}(\sqrt{2}\rho) = \frac{2R}{\pi} \int_{0}^{\infty} f_{\alpha}(\sqrt{2}\rho q) \frac{h_{\alpha(q)}}{q + \langle E \rangle} q \, dq$$

Closure approx.

 $\sum_{n,n',l,l'} k_{n,n',l,l'} \langle n'l' | H_{\alpha}(\sqrt{2}\rho) | nl \rangle$

Top 10 amplitude

	Ferm	i	Gamow-	Feller	Tens	or
Ranking	$(n \ l \ n' \ l')$	Value	$(n \ l \ n' \ l')$	Value	$(n \ l \ n' \ l')$	Value
1	$(0\ 0\ 0\ 0)$	1.626	$(0 \ 0 \ 0 \ 0)$	1.488	$(0 \ 0 \ 0 \ 0)$	0.2249
2	$(1\ 0\ 1\ 0)$	1.307	$(1 \ 0 \ 1 \ 0)$	1.227	$(0 \ 0 \ 0 \ 1)$	0.1637
					$(0\ 1\ 0\ 0)$	
3	$(2\ 0\ 2\ 0)$	1.133	$(2\ 0\ 2\ 0)$	1.081	$(1 \ 0 \ 1 \ 0)$	0.1579
4	$(0\ 1\ 0\ 1)$	1.126	$(0\ 1\ 0\ 1)$	1.051	$(0\ 1\ 0\ 1)$	0.1435
5	$(3\ 0\ 3\ 0)$	1.018	$(3\ 0\ 3\ 0)$	0.982	$(2\ 0\ 2\ 0)$	0.1248
6	$(1\ 1\ 1\ 1)$	1.006	$(1\ 1\ 1\ 1)$	0.937	$(0 \ 0 \ 1 \ 1)$	0.1204
					$(1\ 1\ 0\ 0)$	
7	$(2\ 1\ 2\ 1)$	0.922	$(2\ 1\ 2\ 1)$	0.861	$(1\ 1\ 1\ 1)$	0.1203
8	$(0\ 2\ 0\ 2)$	0.899	$(0\ 2\ 0\ 2)$	0.859	$(0\ 1\ 0\ 2)$	0.1130
					$(0\ 2\ 0\ 1)$	
9	$(3\ 1\ 3\ 1)$	0.859	$(3\ 1\ 3\ 1)$	0.805	$(1 \ 0 \ 1 \ 1)$	0.1115
					$(1\ 1\ 1\ 0)$	
10	$(1\ 2\ 1\ 2)$	0.836	$(1\ 2\ 1\ 2)$	0.790	$(0 \ 0 \ 0 \ 2)$	0.1112
					$(0\ 2\ 0\ 0)$	

0.025

1.6

Fermi

1.2

Matrix elements [L-L type]

SRC = Short range correlation (短距離相関)

TABLE I. Nuclear matrix elements M_F , M_GT , M_T , M_{ν} for $0\nu\beta\beta$ of ⁴⁸Ca, calculated with GXPF1A interaction in closure, running closure, running noncosure and mixed methods for different SRC parametrization. $\langle E \rangle = 7.72$ MeV was used for closure and running closure methods.

NME	SRC	Closure	Running closure	Running nonclosure	Mixed
M_F	None	-0.207	-0.206	-0.210	-0.211
M_F	Miller-Spencer	-0.141	-0.141	-0.143	-0.143
M_F	CD-Bonn	-0.222	-0.221	-0.226	-0.227
M_F	AV18	-0.204	-0.203	-0.207	-0.208
M_{GT}	None	0.711	0.709	0.779	0.781
M_{GT}	Miller-Spencer	0.492	0.490	0.553	0.555
M_{GT}	CD-Bonn	0.738	0.736	0.810	0.812
M_{GT}	AV18	0.675	0.673	0.745	0.747
M_T	None	-0.074	-0.072	-0.074	-0.076
M_T	Miller-Spencer	-0.076	-0.073	-0.075	-0.078
M_T	CD-Bonn	-0.076	-0.074	-0.076	-0.078
M_T	AV18	-0.077	-0.074	-0.076	-0.079
M_{ν}	None	0.765	0.765	0.836	0.836
M_{ν}	Miller-Spencer	0.504	0.505	0.566	0.565
M_{ν}	CD-Bonn	0.799	0.799	0.874	0.874
M_{ν}	AV18	0.725	0.725	0.798	0.798

Total

Matrix elements [ω type]

TABLE II. Nuclear matrix elements $M_{\omega F}$, $M_{\omega GT}$, $M_{\omega T}$, $M_{\nu\omega}$ for $0\nu\beta\beta$ of ⁴⁸Ca calculated with GXPF1A interaction in closure, running closure, running nonclosure and mixed methods for different SRC parametrization. $\langle E \rangle = 7.72$ MeV was used for closure and running closure methods.

NME	SRC	Closure	Running closure	Running nonclosure	Mixed
$M_{\omega F}$	None	-0.199	-0.198	-0.206	-0.207
$M_{\omega F}$	Miller-Spencer	-0.137	-0.136	-0.141	-0.142
$M_{\omega F}$	CD-Bonn	-0.212	-0.211	-0.220	-0.221
$M_{\omega F}$	AV18	-0.195	-0.194	-0.202	-0.203
$M_{\omega GT}$	None	0.66	0.659	0.766	0.767
$M_{\omega GT}$	Miller-Spencer	0.454	0.452	0.546	0.548
$M_{\omega GT}$	CD-Bonn	0.683	0.682	0.794	0.795
$M_{\omega GT}$	AV18	0.623	0.622	0.731	0.732
$M_{\omega T}$	None	-0.072	-0.069	-0.073	-0.076
$M_{\omega T}$	Miller-Spencer	-0.073	-0.070	-0.074	-0.077
$M_{\omega T}$	CD-Bonn	-0.074	-0.071	-0.075	-0.078
$M_{\omega T}$	AV18	-0.074	-0.071	-0.075	-0.078
$M_{\nu\omega}$	None	0.712	0.712	0.821	0.821
$M_{\nu\omega}$	Miller-Spencer	0.466	0.467	0.559	0.558
$M_{\nu\omega}$	CD-Bonn	0.740	0.741	0.856	0.855
$M_{\nu\omega}$	AV18	0.670	0.671	0.781	0.780

Total

The amplitude of matrix element for L-R exchange are comparable to the cases with L-L exchange.

Matrix elements [q type]

TABLE III. Nuclear matrix elements M_{qF} , M_{qGT} , M_{qT} , M_{1+} , and M_{2-} for $0\nu\beta\beta$ of ⁴⁸Ca calculated with GXPF1A interaction in closure, running closure, running nonclosure and mixed methods for different SRC parametrization. $\langle E \rangle = 7.72$ MeV was used for closure and running closure methods.

NME	SRC	Closure	Running closure	Running nonclosure	Mixed
M_{qF}	None	-0.102	-0.102	-0.101	-0.101
M_{qF}	Miller-Spencer	-0.082	-0.082	-0.080	-0.080
M_{qF}	CD-Bonn	-0.123	-0.122	-0.121	-0.122
M_{qF}	AV18	-0.118	-0.118	-0.117	-0.117
M_{qGT}	None	3.243	3.246	3.317	3.314
M_{qGT}	Miller-Spencer	2.681	2.684	2.751	2.748
M_{qGT}	CD-Bonn	3.554	3.557	3.709	3.706
M_{qGT}	AV18	3.423	3.426	3.502	3.499
M_{qT}	None	-0.147	-0.140	-0.143	-0.150
M_{qT}	Miller-Spencer	-0.150	-0.143	-0.146	-0.153
M_{qT}	CD-Bonn	-0.149	-0.142	-0.145	-0.153
M_{qT}	AV18	-0.150	-0.142	-0.146	-0.153
M_{1+}	None	3.937	3.898	3.989	4.028
M_{1+}	Miller-Spencer	3.430	3.389	3.480	3.521
M_{1+}	CD-Bonn	4.221	4.183	4.356	4.394
M_{1+}	AV18	4.101	4.061	4.158	4.198
M_{2-}	None	0.275	0.279	0.378	0.374
M_{2-}	Miller-Spencer	0.085	0.090	0.172	0.167
M_{2-}	CD-Bonn	0.271	0.276	0.372	0.367
M_{2-}	AV18	0.214	0.220	0.319	0.313

Total

The amplitude of matrix element for L-R exchange

are relatively large compared to the cases with L-L exchange.

S. Sarkar, Y. Iwata, P. K. Raina, Phys. Rev. C 2020

Ti

Spin parity decomposition intermediate state -

FIG. 2. (Color online) Contribution through different spin-parity of virtual intermediate states of ${}^{48}Sc$ (J_k^{π}) in NMEs for $m_{\beta\beta}$ and λ mechanisms of $0\nu\beta\beta$ of ${}^{48}Ca$. Here, comparison are shown for NMEs, calculated in running closure and running nonclosure methods with GXPF1A effective interaction for AV18 SRC parametrization. $\langle E \rangle = 7.72$ MeV was used for running closure method.

S. Sarkar, Y. Iwata, P. K. Raina, Phys. Rev. C 2020

n

n

р

р

Spin parity decomposition - initial and final states -

FIG. 3. (Color online) Contribution through different coupled spin-parity of two initial neutrons or two final created protons (J^{π}) in NMEs for $m_{\beta\beta}$ and λ mechanisms of $0\nu\beta\beta$ of ⁴⁸Ca. Here, comparison are shown for NMEs, calculated in running closure and running nonclosure methods with GXPF1A effective interaction for AV18 SRC parametrization. $\langle E \rangle = 7.72$ MeV was used for running closure method.

S. Sarkar, Y. Iwata, P. K. Raina, Phys. Rev. C 2020 Cutoff dependence

- energy -

FIG. 4. (Color online) Variation of (a) Fermi (b) Gamow-Teller (c) tensor and (d) total NMEs for $0\nu\beta\beta$ ($m_{\beta\beta}$ and λ mechanisms) of ⁴⁸Ca with cutoff excitation energy (E_c) of states of virtual intermediate nucleus ⁴⁸Sc. NMEs are calculated with total GXPF1A interaction for AV18 SRC parametrization in running closure and running nonclosure methods. For running closure method, closure energy $\langle E \rangle = 7.72$ MeV was used.

G.S. contribution is large

S. Sarkar, Y. Iwata, P. K. Raina, Phys. Rev. C 2020 Cutoff dependence - number of states -

FIG. 5. (Color online) Variation of (a) Fermi (b) Gamow-Teller (c) tensor and (d) total NMEs for $0\nu\beta\beta$ ($m_{\beta\beta}$ and λ mechanisms) of ⁴⁸Ca with cutoff number of states (N_c) of virtual intermediate nucleus ⁴⁸Sc. NMEs are calculated with total GXPF1A interaction for AV18 SRC parametrization in running closure and running nonclosure methods. For running closure method, closure energy $\langle E \rangle = 7.72$ MeV was used.

S. Sarkar, Y. Iwata, P. K. Raina, Phys. Rev. C 2020

Closure-energy dependence

[constant] no significant change is noticed in several settings

FIG. 6. (Color online) Dependence of the total NMEs for $0\nu\beta\beta$ (λ and $m_{\beta\beta}$ mechanisms) of ⁴⁸Ca with closure energy $\langle E \rangle$, calculated with total GXPF1A interaction for AV18 SRC parmaetrization in running closure and mixed methods.

Summary

 $[T_{1/2}^{0\nu}]^{-1} = \eta_{\nu}^2 C_{mm} + \eta_{\lambda}^2 C_{\lambda\lambda} + \eta_{\nu} \eta_{\lambda} \cos \psi C_{m\lambda}$

NME	SRC	Closure	Running closure	Running nonclosure	Mixed
М	None	0 765	0.765	0.826	0.926
M_{ν} M	Millor Sponger	0.705	0.705	0.556	0.850
M	CD Ropp	0.504	0.505	0.300 X 1	0.505
M_{ν} M_{ν}	AV18	0.725	0.725	0.798	0.874
M_{1+}	None	3.937	3.898	3.989	4.028
M_{1+} M_{1+}	None Miller-Spencer	$3.937 \\ 3.430$	$3.898 \\ 3.389$	3.989 3.480	$4.028 \\ 3.521$
M_{1+} M_{1+} M_{1+}	None Miller-Spencer CD-Bonn	$3.937 \\ 3.430 \\ 4.221$	$3.898 \\ 3.389 \\ 4.183$	3.989 3.480 4.356 x 5	$4.028 \\ 3.521 \\ 4.394$
M_{1+} M_{1+} M_{1+} M_{1+}	None Miller-Spencer CD-Bonn AV18	3.937 3.430 4.221 4.101	3.898 3.389 4.183 4.061	3.989 3.480 4.356 4.158 × 5	$\begin{array}{c} 4.028 \\ 3.521 \\ 4.394 \\ 4.198 \end{array}$
M_{1+} M_{1+} M_{1+} M_{1+} M_{2-}	None Miller-Spencer CD-Bonn AV18 None	3.937 3.430 4.221 4.101 0.275	3.898 3.389 4.183 4.061 0.279	3.989 3.480 4.356 4.158 0.378	$\begin{array}{c} 4.028 \\ 3.521 \\ 4.394 \\ 4.198 \\ 0.374 \end{array}$
M_{1+} M_{1+} M_{1+} M_{1+} M_{2-} M_{2-}	None Miller-Spencer CD-Bonn AV18 None Miller-Spencer	3.937 3.430 4.221 4.101 0.275 0.085	3.898 3.389 4.183 4.061 0.279 0.090	3.989 3.480 4.356 4.158 0.378 0.172 x 4/2	$\begin{array}{r} 4.028 \\ 3.521 \\ 4.394 \\ 4.198 \\ 0.374 \\ 0.167 \end{array}$
M_{1+} M_{1+} M_{1+} M_{1+} M_{2-} M_{2-} M_{2-}	None Miller-Spencer CD-Bonn AV18 None Miller-Spencer CD-Bonn	3.937 3.430 4.221 4.101 0.275 0.085 0.271	3.898 3.389 4.183 4.061 0.279 0.090 0.276	3.989 3.480 4.356 4.158 x 5 4.158 0.378 0.172 0.372 x 1/2	$\begin{array}{r} 4.028\\ 3.521\\ 4.394\\ 4.198\\ 0.374\\ 0.167\\ 0.367\end{array}$

$$C_{mm} = g_A^4 M_\nu^2 G_{01},$$
*1 (std)

$$C_{m\lambda} = -g_A^4 M_\nu (M_{2-}G_{03} - M_{1+}G_{04})$$

$$C_{\lambda\lambda} = g_A^4 (M_{2-}^2 G_{02} + \frac{1}{9}M_{1+}^2 G_{011} - \frac{2}{9}M_{1+}M_{2-}G_{010})$$
large~*10 small~1/10 ~*1

Effect should not be negligible.

 $C_{\lambda\lambda}$ 1st : enlarged amplitude (*5) $C_{\lambda\lambda}$ 2nd : comparable amplitude (*1/2) $C_{\lambda\lambda}$ 3rd : enlarged amplitude (*2.5)

Conclusion

we have found the large WR-WL effect

almost 2 times larger than WL-WL

$$g_V(q^2) = \frac{g_V}{\left(1 + \frac{q^2}{M_V^2}\right)^2},$$

$$g_A(q^2) = \frac{g_A}{\left(1 + \frac{q^2}{M_A^2}\right)^2},$$

$$g_M(q^2) = (\mu_p - \mu_n)g_V(q^2),$$

$$g_P(q^2) = \frac{2m_p g_A(q^2)}{(q^2 + m_\pi^2)} \left(1 - \frac{m_\pi^2}{M_A^2}\right)$$

$$f_{GT}(q,r) = \frac{j_0(qr)}{g_A^2} \left(g_A^2(q^2) - \frac{g_A(q^2)g_P(q^2)}{m_N} \frac{q^2}{3} + \frac{g_P^2(q^2)}{4m_N^2} \frac{q^4}{3} + \left(2\frac{g_M^2(q^2)}{4m_N^2} \frac{q^2}{3} \right) \right), \quad (15)$$

$$f_F(q,r) = g_V^2(q^2)j_0(qr), \tag{16}$$

$$f_T(q,r) = \frac{j_2(qr)}{g_A^2} \left(\frac{g_A(q^2)g_P(q^2)}{m_N}\frac{q^2}{3} - \frac{g_P^2(q^2)}{4m_N^2}\frac{q^4}{3} + \frac{g_M^2(q^2)}{4m_N^2}\frac{q^2}{3}\right), \tag{17}$$

$$f_{\omega GT}(q,r) = \frac{q}{(q+E_k - (E_i + E_f)/2)} f_{GT}(q,r), \qquad (18)$$

$$f_{\omega F}(q,r) = \frac{q}{(q+E_k - (E_i + E_f)/2)} f_F(q,r),$$
(19)

$$f_{\omega T}(q,r) = \frac{q}{(q+E_k - (E_i + E_f)/2)} f_T(q,r), \tag{20}$$

$$f_{qF}(q,r) = rg_V^2(q^2)j_1(qr)q,$$
(22)

$$\begin{split} f_{qT}(q,r) &= \frac{r}{3} \left(\left(\frac{g_A^2(q^2)}{g_A^2} q - \frac{g_P(q^2)g_A(q^2)}{2g_A^2} \frac{q^3}{m_N} \right) j_1(qr) \\ &- \left(9 \frac{g_P^2(q^2)}{2g_A^2} \frac{q^5}{20m_N^2} \left[2j_1(qr)/3 - j_3(qr) \right] \right) \right), \end{split}$$

Previous shell model calculation did not calculate/find the importance of 2nd and 3rd terms

Not calculated in Horoi, Neascu, PRC 2018

Refs. for studying on this direction

λ -mechanism

D. Stefánik, R. Dvornický, F. Šimkovic, and P. Vogel, Reexamining the light neutrino exchange mechanism of the $0\nu\beta\beta$ decay with left-and right-handed leptonic and hadronic currents, Physical Review C **92**, 055502 (2015).

λ -mechanism (mainly by RPA calculations)

F. Šimkovic, D. Štefánik, and R. Dvornickỳ, The λ mechanism of the $0\nu\beta\beta$ -decay, Frontiers in Physics 5, 57 (2017).

Review article (e.g. hadronic current):

J. Engel and J. Menéndez, Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review, Reports on Progress in Physics 80, 046301 (2017).

Summary

ISM research [overview]
 + nuclear structure, + hadronic current, +ab-initio

→right-handed neutrino, right-handed W-boson

- * Shell model calculation for DBD of Ca48
- Large scale calculation by Tokyo group -
- * Right handed weak bosons ?
- * (Right handed neutrino) --- sterile neutrinos ?