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1. Majorana fermion and parity

Majorana fermion is defined by the Dirac action but with purely imaginary Dirac
gamma matrices γµ.
Then the Dirac equation

[iγµ∂µ −m]ψ(x) = 0

is a real differential equation, and one can impose the reality condition on the
solution

ψ(x)⋆ = ψ(x)

which implies the self-conjugate under the charge conjugation
The conventional parity transformation

ψ(x) → ψp(t,−x⃗) = γ0ψ(t,−x⃗)

with eigenvlues ±1 cannot maintain the reality condition for the purely imaginary
γ0. Thus the “iγ0-parity”

ψ(x) → ψp(t,−x⃗) = iγ0ψ(t,−x⃗)

is chosen as a natural parity transformation rule for the Majorana fermion.
E. Majorana(1937), B. Kayser(1982).
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In the generic representation of the Dirac matrices, the “iγ0-parity” satisfies the
condition with C = iγ2γ0

iγ0ψ(t,−x⃗) = Ciγ0ψ(t,−x⃗)T

for the field which satisfies the classical Majorana condition

ψ(x) = Cψ(x)
T

and thus iγ0-parity is a natural choice of the parity for the Majorana fermion in
this generic representation.

For consistency, we assign the iγ0-parity convention to charged leptons also when
we assign iγ0-parity to neutrinos, although this extra phase is cancelled in the lepton
number conserving terms in the charged lepton sector.
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2. Charge conjugation C

In the extension of the SM, we often encounter the Majorana neutrino of the form

ψ(x) = νL(x) + CνL
T (x)

This field satisfies the classical Majorana condition

ψ(x) = Cψ
T
(x)

and in this operation, we see

νL(x) → CνL
T (x), CνL

T (x) → νL(x)

It is thus tempting to identify the charge conjugation of νL(x), which is denoted
as νcL(x), by

νcL(x) = CνL
T (x)

We named this as “Pseudo-C”.

KF and A. Tureanu, Eur. Phys. J. C79 (2019) 752.
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We note that this pseudo-C differs from the conventional charge conjugation

νcL(x) = CνR
T (x)

which is related to the absence of the Majorana-Weyl fermion in d = 4.

In d = 4, charge conjugation changes the chiral operator γ5 → −γ5.

This pseudo-C has several difficulties:

First of all, it is operatorially inconsistent. Suppose that we have an operator
which generates the pseudo-C

C̃νL(x)C̃† = CνL
T (x)

then we have, by noting νL(x) = (1−γ5
2 )νL(x),

C̃νL(x)C̃† = (
1− γ5

2
)C̃νL(x)C̃† = (

1− γ5
2

)CνL
T (x) = 0

since CνL
T (x) is right-handed.
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Secondly, it would keep the Weyl fermion∫
d4xL =

∫
d4xνL(x)iγ

µ∂µνL(x)

formally invariant under the charge conjugation. We know that C is not defined for
the Weyl neutrino.

Thirdly, we have a difficulty to define a sensible CP for the pseudo-C.
We know that the parity (mirror reflection) should be of the form

νL(t, x⃗) → iγ0νR(t,−x⃗)

We also know that CP should be of the form

νL(t, x⃗) → iγ0CνL
T (t,−x⃗)

to keep the Weyl neutrino invariant. But it is impossible to define this CP using
the pseudo-C.
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Furthermore, no neutrinoless double beta decay if the vacuum is invariant
under the pseudo-C.

KF. Eur. Phys. J. C80 (2020) 285.∫
d4xLWeak =

∫
d4x[(g/

√
2)l̄L(x)γ

µWµ(x)UPMNSνL(x) + h.c.]

=

∫
d4x[(g/

√
2)l̄L(x)γ

µWµ(x)UPMNS
(1− γ5)

2
ψM(x) + h.c.]

in the case of Weinberg’s model ψM(x) = νL(x) + CνL
T (x).

A necessary condition of the neutrinoless double beta decay is that not all the
time-ordered correlations of the neutrino mass eigenstates

⟨0|T ⋆νL(x)νL(y)|0⟩ = ⟨0|T ⋆ (1− γ5)

2
ψM(x)

(1− γ5)

2
ψM(y)|0⟩

vanish in the second order perturbation in LWeak.
If a unitary operator C̃ which generates the pseudo-C exists and if the (neutrino)

vacuum |0⟩ should be invariant

C̃†|0⟩ = |0⟩

and thus ⟨0|C̃ = ⟨0|, one can prove that all of the above correlations vanish

⟨0|T ⋆νL(x)νL(y)|0⟩ = ⟨0|T ⋆[(
1− γ5

2
)νL](x)νL(y)|0⟩

= ⟨0|C̃T ⋆[(
1− γ5

2
)νL](x)νL(y)C̃†|0⟩

= ⟨0|T ⋆[(
1− γ5

2
)CνL

T ](x)[CνL
T ](y)|0⟩

= 0

where we used νL(x) = (1−γ5
2 )νL(x) and C̃νL(x)C̃† = CνL(x)

T
and the fact that

CνL
T (x) is right-handed.
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How to define Majorana ψM(x) = νL(x) + CνL
T (x)?

KF. Eur. Phys. J. C80 (2020) 285.

1. The use of CP to define the Majorana

We know CP for the chiral fermion

νL(x) → iγ0CνL
T (t,−x⃗)

Then

ψM(x) → iγ0CψM
T
(t,−x⃗) = iγ0ψM(t,−x⃗)

for the fermion which satisfies the classical Majorana condition CψM
T
(x) = ψM(x)

We thus define the Majorana by CP symmetry

ψM(x) → ψcp
M(t,−x⃗) = iγ0ψM(t,−x⃗)

We do not assign C to the Majorana ψM(x), since ψM(x) → CνR
T (x)+ νR(x) under

C.

If one wishes to have C and P for the Majorana neutrino ψM(x), one may define
modified symmetry

CM = 1, PM = CP

Then

CMψM(x)C†
M = ψM(x), PMψM(x)P†

M = iγ0ψM(t,−x⃗)
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For seesaw model, the use of generalized Pauli-Gursey

KF. Phys.Lett. B789 (2019) 76

We start with a model Lagrangian

L = νL(x)iγ
µ∂µνL(x) + νR(x)iγ

µ∂µνR(x)

− νL(x)mDνR(x)− (1/2)νTL (x)CmLνL(x)

− (1/2)νTR(x)CmRνR(x) + h.c. (1)

We write the mass term as

(−2)Lmass =
(
νR νCR

)(
mR mD

mT
D mL

)(
νCL
νL

)
+ h.c., (2)

where we defined

νCL ≡ CνR
T , νCR ≡ CνL

T (3)

We diagonalize the complex symmetric mass matrix using a 6 × 6 unitary matrix
(Autonne-Takagi factorization)

UT

(
mR mD

mT
D mL

)
U =

(
M1 0
0 −M2

)
, (4)

where M1 and M2 are 3× 3 real diagonal matrices.
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In passing, we comment on Naturalness of seesaw:

KF and A. Tureanu, Phys. Lett. B767 (2017) 199.

We denote that

M1,M2 =
√

(mR/2)2 +m2
D ±mR/2 ≃ mR or m2

D/mR

for the special case of a single generation with real mD, mR, and mL = 0.

Hierarchy issue has been analyzed using the dimensional regularization which is
free of quadratic divergences (hierarchy and quadratic divergence are inependent
notions.)

In this interpretation, for the typical mR = 104 ∼ 1015 GeV, a hitherto unrecog-
nized fine tuning of the order mν/mR = 10−15 ∼ 10−26.

If SUSY is discovered at some energy below GUT scale, this naive estimate is
modified.

“Naturalness” is a subjective concept.
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Coming back to seesaw, we thus have

(−2)Lmass =
(
ν̃R ν̃CR

)(
M1 0
0 −M2

)(
ν̃CL
ν̃L

)
+ h.c., (5)

where we defined (
νCL
νL

)
= U

(
ν̃CL
ν̃L

)
,

(
νR
νCR

)
= U ⋆

(
ν̃R
ν̃CR

)
. (6)

We then have

L = ν̃L(x)i ̸∂ν̃L(x) + ν̃R(x)i ̸∂ν̃R(x)
− (1/2){ν̃TRCM1ν̃R − ν̃TLCM2ν̃L}+ h.c.. (7)

Conventionally, one defines

ψ+(x) = ν̃R + ν̃CL = ν̃R + Cν̃R
T
,

ψ−(x) = ν̃L − ν̃CR = ν̃L − Cν̃L
T

and one obtains

L = (1/2){ψ+(x)i ̸∂ψ+(x) + ψ−(x)i ̸∂ψ−(x)}
− (1/2){ψ+M1ψ+ + ψ−M2ψ−}

One may use CP to define the Majorana ψ±(x), as we discussed.
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Alternatively, generalized Pauli-Gursey transformation: canonical transformation.
Arbitrary 6× 6 unitary U and generic transformation(

νCL
νL

)
= U

(
ν̃CL
ν̃L

)
,

(
νR
νCR

)
= U ⋆

(
ν̃R
ν̃CR

)
(8)

The kinetic part of the Lagrangian is form invariant under this transformation.

We thus consider a further 6 × 6 real generalized Pauli-Gursey transformation O

by (
ν̃CL
ν̃L

)
= O

(
NC

L

NL

)
,

(
ν̃R
ν̃CR

)
= O

(
NR

NC
R

)
, (9)

By choose a specific 6× 6 orthogonal transformation

O =
1√
2

(
1 1
−1 1

)
(10)

where 1 stands for a 3× 3 unit matrix, we have

L = (1/2){N(x)i ̸∂N(x) +NC(x)i ̸∂NC(x)}
− (1/4){N(M1 +M2)N +NC(M1 +M2)N

C}
− (1/4)[N(M1 −M2)N

C +NC(M1 −M2)N ] (11)

which is invariant under C, P and CP

C : N(x) ↔ NC(x) = CN
T
(x),

P : N(x) → iγ0N(t,−x⃗), NC(x) → iγ0NC(t,−x⃗),
CP : N(x) → iγ0NC(t,−x⃗), NC(x) → iγ0N(t,−x⃗). (12)

Note that only the Dirac-type particles N(x) and NC(x) with well-defined C,
P and CP properties appear after this Pauli-Gursey: γ5 disappears.
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We now make a renaming of variables

ψ+(x) =
1√
2
(N(x) +NC(x)), ψ−(x) =

1√
2
(N(x)−NC(x)), (13)

and we obtain

L = (1/2){ψ+(x)i ̸∂ψ+(x) + ψ−(x)i ̸∂ψ−(x)}
− (1/2){ψ+M1ψ+ + ψ−M2ψ−}. (14)

After this renaming of variables, we find the transformation laws of ψ±(x) induced
by those of N and NC ,

C : ψ+(x) → ψ+(x), ψ−(x) → −ψ−(x),

P : ψ+ → iγ0ψ+(t,−x⃗), ψ−(x) → iγ0ψ−(t,−x⃗),
CP : ψ+(x) → iγ0ψ+(t,−x⃗), ψ−(x) → −iγ0ψ−(t,−x⃗) (15)

which naturally keep the Lagrangian invariant.

One can define Majorana fermions in a natural manner by a suitable choice of
generalized Pauli-Gursey transformation in the seesaw model.
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Parity in the extension of SM and “emergent” Majorana neutrino

If iγ0 parity is mandatory for the Majorana, how to formulate the Majorana emeg-
ing in an extension of SM, such as in the model of Weinberg?

One can in fact formulate the emergent Majorana neutrino consistently using either
γ0 parity or iγ0 parity.

The basic idea is that

ψM(x) = eiανL(x) + e−iαCνL
T (x)

with arbitrary real α satisfies the Majorana condition

ψM(x) = CψM(x)
T
(x)

A suitable choice of α can compensate the different parity, γ0 parity or iγ0 parity,
in the starting theory.

KF. Phys. Rev. D102 (2020) 105001.


