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Neutrino properties

2021/02/15Takehiko Asaka (Niigata Univ.)

3

n What are known now ?
¤ Mixing angles and mass squared differences are measured 

very precisely by various oscillation experiments

n What are unknown now ?
¤ Absolute masses ? (Mass ordering ? Lightest neutrino mass ?)
¤ Dirac or Majorana fermions ?
¤ CP violations ? (Dirac phase ? Majorana phase(s) ?)
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NuFIT 5.0 (2020)

for NH case

We do NOT know the mechanism
generating neutrino masses !!



n Chiral structure of fermions in the SM

n Mass spectrum of fermions in the SM

Origin of neutrino masses
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62 Neutrinos

or why there is such a large gap between the neutrino and the charged fermion masses. We suspect, however,
that this may be Nature’s way of telling us that neutrino masses are “di↵erent.”
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Figure 4-2. Standard Model fermion masses. For the neutrino masses, the normal mass hierarchy was
assumed, and a loose upper bound mi < 1 eV, for all i = 1, 2, 3 was imposed.

This suspicion is only magnified by the possibility that massive neutrinos, unlike all other fermions in the
Standard Model, may be Majorana fermions. The reason is simple: neutrinos are the only electrically neutral
fundamental fermions and hence need not be distinct from their antiparticles. Determining the nature of
the neutrino – Majorana or Dirac – would not only help guide theoretical work related to uncovering the
origin of neutrino masses, but could also reveal that the conservation of lepton number is not a fundamental
law of Nature. The most promising avenue for learning the fate of lepton number, as will be discussed
in Sec. 4.3, is to look for neutrinoless double-beta decay, a lepton-number violating nuclear process. The
observation of a non-zero rate for this hypothetical process would easily rival, as far as its implications for our
understanding of nature are concerned, the first observations of parity violation and CP -invariance violation
in the mid-twentieth century.

It is natural to ask what augmented, “new” Standard Model (⌫SM) leads to non-zero neutrino masses. The
answer is that we are not sure. There are many di↵erent ways to modify the Standard Model in order to
accommodate neutrino masses. While these can di↵er greatly from one another, all succeed – by design –
in explaining small neutrino masses and all are allowed by the current particle physics experimental data.
The most appropriate question, therefore, is not what are the candidate ⌫SM’s, but how can one identify
the “correct” ⌫SM? The answer lies in next-generation experiments, which will be described throughout this
chapter.

For concreteness we discuss one generic mechanism in more detail. The e↵ect of heavy new degrees of
freedom in low-energy phenomena can often be captured by adding to the Standard Model higher-dimensional
operators. As first pointed out in [27], given the Standard Model particle content and gauge symmetries,
one is allowed to write only one type of dimension-five operator – all others are dimension-six or higher:

1

⇤
(LH)(LH) + h.c. )

v2

⇤
⌫⌫ + h.c., (4.5)

where L and H are the lepton and Higgs boson SU(2)L doublets, and the arrow indicates one of the
components of the operator after electroweak symmetry is broken. v is the vacuum expectation value of the
neutral component of H, and ⇤ is the e↵ective new physics scale. If this operator is indeed generated by
some new physics, neutrinos obtain Majorana masses m⌫ ⇠ v2/⇤. For ⇤ ⇠ 1015 GeV, m⌫ ⇠ 10�1 eV, in
agreement with the current neutrino data. This formalism explains the small neutrino masses via a seesaw
mechanism: m⌫ ⌧ v because ⇤ � v.

Fundamental Physics at the Intensity Frontier
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Why neutrinos are 
only left-handed ?

Why neutrinos are 
are so light ?



Right-handed neutrinos

2021/02/15Takehiko Asaka (Niigata Univ.)

5

𝜈!



Extension by right-handed neutrinos (𝝂𝑹)
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n Seesaw mechanism

¤ Light active neutrinos 𝜈
l Mass

¤ Heavy neutral leptons (HNLs) 𝑁
l Mass 𝑀0 = 𝑀1 and mixing Θ = 𝑀2/𝑀1

n Mixing in weak interaction
l

Minkowski ʼ77, Yanagida ʼ79, Gell-Mann, Ramond, Slansky ʻ79
Glashow ʻ79

ℒ = ℒ!" + 𝑖𝜈#𝜕$𝛾$𝜈# − 𝐹*𝐿𝜈#Φ+
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2
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𝑁3
𝑊,𝑍

ℓ4 , 𝜈4𝑔 Θ43



Scale of seesaw (mass of HNL)
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𝐹 =
𝑚+𝑀,

Φ 𝑚! = 5×10"## GeV

Leptogenesis
(Fukugita, Yanagida ʻ86)

Baryogenesis via neutrino oscillation
(Akhmedov, Rubakov, Smirnov ʼ98,
TA, Shaposhnikov ʼ05)

𝑀+ = −𝑀*
- 1
𝑀%

𝑀*



Mass and mixing of HNL
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Θ ( =
𝑀*
(

𝑀,
( =

𝑚+
𝑀,

𝑚! = 5×10"## GeV

Leptogenesis

Baryogenesis via neutrino oscillation



Consequences of seesaw mechanism
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n Active neutrinos and HNLs are both Majorana fermions
n Lepton number is violated at Lagrangian level

¤ Crucial for explaining the baryon asymmetry of the Univ. 
l Leptogenesis
l Baryogenesis via neutrino oscillation

¤ Lead to non-SM LNV processes
l Meson decays (𝐵# → 𝑁 𝜇# → 𝜋& 𝜇# 𝜇#)
l 𝑝𝑝 → ℓ&𝑁 → ℓ& ℓ&𝑗 𝑗
l 𝑒#𝑒# → 𝑊#𝑊#

l …
l Neutrinoless Double Beta Decay (NDBD)  

𝜈, 𝑁

𝜈, 𝑁
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Today, we discuss 

Neutrinoless Double Beta Decay (NDBD) in seesaw mechanism

n Part 1: NDBD in high-scale seesaw 
¤ NDBD in modular flavor symmetry

n Part 2: NDBD in low-scale seesaw
¤ What if NDBD is unseen ?
¤ What if NDBD is observed ?

n Summary

Takehiko Asaka (Niigata Univ.)

ref. TA, Yongtae Heo, Takahiro Yoshida (arXiv:2009.12120)

ref. TA, Hiroyuki Ishida, Kazuki Tanaka   (arXiv:2012.12564, 2012.13527, 
2101.12498)



Part 1: 
NDBD in high-scale seesaw 



Effective mass in NDBD decay
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n 0nbb decay rate

n Effective mass

𝑇#/%
&' (#

= 𝐺&' ℳ&' % 𝑚)**
%

ℳ.+ : Nuclear matrix element (NME) 
𝐺.+ : Phase space factor 

𝑚/00 : Effective mass

𝑚)** =,
+

𝑈,+% 𝑚+

𝑈,+

𝑈,+

𝑖

𝑖

𝑚+

𝑚1 : active neutrino masses
𝑈21 : PMNS neutrino mixing element



Masses and mixings of active neutrinos
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n Active neutrino masses (𝑚", 𝑚!, 𝑚')

n PMNS mixing matrix (𝜃56 , δ, 𝛼!", 𝛼'")

Normal Hierarchy (NH)
𝑚( > 𝑚' > 𝑚3

𝑚)** = 𝑚#𝑐#%% 𝑐#-% +𝑚%𝑠#%% 𝑐#-% 𝑒+.78 +𝑚-𝑠#-% 𝑒+(.97(%0)
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Current status
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KamLAND-Zen PRL117, 082503 (ʻ16)

|𝑚:;;|
[meV]

Cosm
ological bound



Future prospects
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Slide by J. Shirai
@Neutrino2016



0nbb decay and Majorana phase
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𝑚:;; ≃ 𝑐"'! 𝑚"
!𝑐"!< +𝑚!

!𝑠"!< + 2 cos 𝛼!" 𝑚"𝑚!𝑐"!! 𝑠"!! "/!

|𝑚:;;|
[meV]

Majorana phase 𝛼!"

n IH case with 𝒎𝟐 > 𝒎𝟏 ≫ 𝒎𝟑

To demonstrate the low background levels achieved in the
0νββ region, Fig. 2 shows the energy spectra within a 1-m
radius, together with the best-fit background composition
and the 90% C.L. upper limit for 0νββ decays. Combining
the results, we obtain a 90% C.L. upper limit of
< 2.4 ðkton dayÞ−1, or T0ν

1=2 > 9.2 × 1025 yr (90% C.L.).
We find that a fit including potential backgrounds from
88Y, 208Bi, and 60Co [3] does not change the obtained limit.
A MC of an ensemble of experiments assuming the best-fit
background spectrum without a 0νββ signal indicates a
sensitivity of 5.6 × 1025 yr, and the probability of obtaining
a limit stronger than the presented result is 12%. For
comparison, the sensitivity of an analysis in which
the 110mAg background rates in period 1 and period 2 are
constrained to the 110mAg half-life is 4.5 × 1025 yr.
Combining the phase-I and phase-II results, we

obtain T0ν
1=2 > 1.07 × 1026 yr (90% C.L.). This corresponds

to an almost sixfold improvement over the previous

KamLAND-Zen limit using only the phase-I data, owing
to a significant reduction of the 110mAg contaminant and the
increase in the exposure of 136Xe.
From the limit on the 136Xe 0νββ decay half-life, we

obtain a 90% C.L. upper limit of hmββi < ð61 − 165Þ meV
using an improved phase space factor calculation [17,18]
and commonly used NME calculations [19–25] assuming
the axial coupling constant gA ≃ 1.27. Figure 3 illustrates
the allowed range of hmββi as a function of the lightest
neutrino mass mlightest under the assumption that the decay
mechanism is dominated by exchange of a pure-Majorana
Standard Model neutrino. The shaded regions include the
uncertainties inUei and the neutrino mass splitting, for each
hierarchy. Also drawn are the experimental limits from
the 0νββ decay searches for each nucleus [2,26–28]. The
upper limit on < mββ > from KamLAND-Zen is the most
stringent, and it also provides the strongest constraint on
mlightest considering extreme cases of the combination of
CP phases and the uncertainties from neutrino oscillation
parameters [29,30]. We obtain a 90% C.L. upper limit
of mlightest < ð180–480Þ meV.
In conclusion, we have demonstrated effective back-

ground reduction in the Xe-loaded liquid scintillator by
purification, and enhanced the 0νββ decay search sensi-
tivity in KamLAND-Zen. Our search constrains the mass
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FIG. 2. (a) Energy spectrum of selected ββ candidates within a
1-m-radius spherical volume in period 2 drawn together with
best-fit backgrounds, the 2νββ decay spectrum, and the 90% C.L.
upper limit for 0νββ decay. [(b) and (c)] Close-up energy spectra
for 2.3 < E < 3.0 MeV in period 1 and period 2, respectively.
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FIG. 3. EffectiveMajorana neutrino mass hmββi as a function of
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other nuclei from Refs. [2,26–28], considering an improved
phase space factor calculation [17,18] and commonly used NME
calculations [19–25]. The side panel shows the corresponding
limits for each nucleus as a function of the mass number.

PRL 117, 082503 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

19 AUGUST 2016

082503-5

Mass ordering, lightest neutrino mass and CPV phases
are crucial for estimation of effective mass !



Flavor Symmetry
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n Horizontal symmetry between generations of matter fields can 
relate elements of Yukawa coupling matrix !

¤ So far, various flavor symmetries have been discussed !

n Discrete flavor symmetries
¤ Flavor mixing can be understood in connection with geometry
¤ Especially, typical mixing pattern of neutrinos can be explained 

by  S4, A4, … discrete symmetries !

Flavor Symmetry 𝜈, 𝜈- 𝜈.

See reviews:
Altarelli, Feruglio (ʻ10), King, Luhn (ʻ13), 
Tanimoto (ʻ15), Petcov (ʻ17)



Origin of Discrete Flavor Symmetry
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n Ferglio
¤ Modular Symmetry in torus compactification 

is an origin of discrete flavor symmetry.

¤ Modular Symmetry controls the superpotential 
leading to the desired mass hierarchies and 
mixing angles of quarks and leptons

[Feruglio 1706.08749]

Kobayashi, Tanaka, Tatsuishi 1803.10391
Penedo, Petcov 1806.11040
Criado, Feruglio 1807.01125
Kobayashi, Omoto, Shimizu, Tanimoto, Tatsuishi 1808.03012
Novichkov, Penedo, Petcov, Titov 1811.04933, 1812.02158
Anda, King, Perdomo 1812.05620
Okada, Tanimoto 1812.09677
Kobayashi, Shimizu, Takagi, Tanimoto, Tatsuishi, Uchida 1812.11072
Novichkov, Petcov, Tanimoto 1812.11289
…



Modular Symmetry



Torus compactification
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n Torus ℂ/Λ

n Transformations of basis vectors

n Modular Symmetry XΓ

https://commons.wikimedia.org/

𝛼"

𝛼!

𝛼" = 2𝜋𝑅
𝛼! = 2𝜋𝑅 𝜏

explain the BAU. However, it can be small as TeV scale if right-handed neutrinos are quasi-degenerate
in mass [27].

Furthermore, the sign of the BAU is controlled by the CP violation pattern in leptonic sector. Note
that the sign of the BAU cannot be predicted uniquely even if the CP violation associated with active
neutrinos (i.e., the Dirac and Majorana phases in the mixing matrix of active neutrinos) are determined.
This is because there exists one or more additional phases associated with right-handed neutrinos which
decouple from the low energy phenomena if right-handed neutrinos are sufficiently heavy. Under these
situations, it is interesting to investigate the sign and magnitude of the BAU in the models with the
modular symmetry, since there are non-trivial relations between the properties of right-handed neutrinos
and the low energy observables of neutrino physics due to the symmetry. As our first work, we shall
discuss the leptogenesis in the model with A4 symmetry [10] simply because the model has a small
number of free parameters and then very predictive.

The paper is organized as follows. In section 2, we briefly review the modular symmetry in the
framework of the theory with extra dimensions which is compactfied on a torus. We then explain the
model with the A4 symmetry in section 3. The leptognesis in the model is discussed in section 4. We
present in section 5 the results of the analysis, namely the sign and magnitude of the BAU predicted by
the model. The final section is devoted to discussions and conclusion.

2 Modular group and its finite subgroups

In this section, we give a brief review on the modular symmetry on a torus. A two-dimensional torus T 2

can be constructed by R2/Λ, where Λ denotes a two-dimensional lattice. We use the complex coordinate
on R2 and denote basis vectors of Λ as α1 = 2πR and α2 = 2πRτ , where R is real and τ is a modulus
belonging to upper-half complex plane Im τ > 0. There is some ambiguity in choice of the basis vectors.
The same lattice can be spanned by the following basis vectors,

(
α′
2

α′
1

)
=

(
a b
c d

)(
α2

α1

)
,

(
a b
c d

)
∈ SL(2,Z), (2)

where
SL(2,Z) =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
≡ Γ. (3)

This transformation of basis vectors is written in terms of the modulus τ ≡ α2/α1 by

τ → τ ′ = γτ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (4)

The modular group Γ is the transformation group acts on the modulus. Since γ and −γ transform τ in the
same way in (4), the modular group is isomorphic to SL(2,Z)/{I,−I}. The modular group is generated
by two generators S and T ,

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
(5)

2

explain the BAU. However, it can be small as TeV scale if right-handed neutrinos are quasi-degenerate
in mass [27].

Furthermore, the sign of the BAU is controlled by the CP violation pattern in leptonic sector. Note
that the sign of the BAU cannot be predicted uniquely even if the CP violation associated with active
neutrinos (i.e., the Dirac and Majorana phases in the mixing matrix of active neutrinos) are determined.
This is because there exists one or more additional phases associated with right-handed neutrinos which
decouple from the low energy phenomena if right-handed neutrinos are sufficiently heavy. Under these
situations, it is interesting to investigate the sign and magnitude of the BAU in the models with the
modular symmetry, since there are non-trivial relations between the properties of right-handed neutrinos
and the low energy observables of neutrino physics due to the symmetry. As our first work, we shall
discuss the leptogenesis in the model with A4 symmetry [10] simply because the model has a small
number of free parameters and then very predictive.

The paper is organized as follows. In section 2, we briefly review the modular symmetry in the
framework of the theory with extra dimensions which is compactfied on a torus. We then explain the
model with the A4 symmetry in section 3. The leptognesis in the model is discussed in section 4. We
present in section 5 the results of the analysis, namely the sign and magnitude of the BAU predicted by
the model. The final section is devoted to discussions and conclusion.

2 Modular group and its finite subgroups

In this section, we give a brief review on the modular symmetry on a torus. A two-dimensional torus T 2

can be constructed by R2/Λ, where Λ denotes a two-dimensional lattice. We use the complex coordinate
on R2 and denote basis vectors of Λ as α1 = 2πR and α2 = 2πRτ , where R is real and τ is a modulus
belonging to upper-half complex plane Im τ > 0. There is some ambiguity in choice of the basis vectors.
The same lattice can be spanned by the following basis vectors,

(
α′
2

α′
1

)
=

(
a b
c d

)(
α2

α1

)
,

(
a b
c d

)
∈ SL(2,Z), (2)

where
SL(2,Z) =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
≡ Γ. (3)

This transformation of basis vectors is written in terms of the modulus τ ≡ α2/α1 by

τ → τ ′ = γτ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (4)

The modular group Γ is the transformation group acts on the modulus. Since γ and −γ transform τ in the
same way in (4), the modular group is isomorphic to SL(2,Z)/{I,−I}. The modular group is generated
by two generators S and T ,

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
(5)

2

explain the BAU. However, it can be small as TeV scale if right-handed neutrinos are quasi-degenerate
in mass [27].

Furthermore, the sign of the BAU is controlled by the CP violation pattern in leptonic sector. Note
that the sign of the BAU cannot be predicted uniquely even if the CP violation associated with active
neutrinos (i.e., the Dirac and Majorana phases in the mixing matrix of active neutrinos) are determined.
This is because there exists one or more additional phases associated with right-handed neutrinos which
decouple from the low energy phenomena if right-handed neutrinos are sufficiently heavy. Under these
situations, it is interesting to investigate the sign and magnitude of the BAU in the models with the
modular symmetry, since there are non-trivial relations between the properties of right-handed neutrinos
and the low energy observables of neutrino physics due to the symmetry. As our first work, we shall
discuss the leptogenesis in the model with A4 symmetry [10] simply because the model has a small
number of free parameters and then very predictive.

The paper is organized as follows. In section 2, we briefly review the modular symmetry in the
framework of the theory with extra dimensions which is compactfied on a torus. We then explain the
model with the A4 symmetry in section 3. The leptognesis in the model is discussed in section 4. We
present in section 5 the results of the analysis, namely the sign and magnitude of the BAU predicted by
the model. The final section is devoted to discussions and conclusion.

2 Modular group and its finite subgroups

In this section, we give a brief review on the modular symmetry on a torus. A two-dimensional torus T 2

can be constructed by R2/Λ, where Λ denotes a two-dimensional lattice. We use the complex coordinate
on R2 and denote basis vectors of Λ as α1 = 2πR and α2 = 2πRτ , where R is real and τ is a modulus
belonging to upper-half complex plane Im τ > 0. There is some ambiguity in choice of the basis vectors.
The same lattice can be spanned by the following basis vectors,

(
α′
2

α′
1

)
=

(
a b
c d

)(
α2

α1

)
,

(
a b
c d

)
∈ SL(2,Z), (2)

where
SL(2,Z) =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
≡ Γ. (3)

This transformation of basis vectors is written in terms of the modulus τ ≡ α2/α1 by

τ → τ ′ = γτ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (4)

The modular group Γ is the transformation group acts on the modulus. Since γ and −γ transform τ in the
same way in (4), the modular group is isomorphic to SL(2,Z)/{I,−I}. The modular group is generated
by two generators S and T ,

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
(5)

2

XΓ =
𝑆𝐿(2, 𝑍)
I, −I

= 𝑃𝑆𝐿(2, 𝑍)



n Modular group is generated by two elements

n Finite quotient subgroup by imposing 𝑇0 = 1

¤ Finite non-Abelian discrete group

Modular symmetry

2021/02/15Takehiko Asaka (Niigata Univ.)

21

In terms of the modulus, they induce the transformations, S : τ → −1/τ and T : τ → τ + 1. We can
easily see that they satisfy the following algebraic relations, S2 = I and (ST )3 = I. We introduce a
series of groups Γ(N), N = 1, 2, 3, . . . called principal congruence subgroups,

Γ(N) =

{(
a b
c d

)
∈ SL(2,Z),

(
a b
c d

)
=

(
1 0
0 1

)
(modN)

}
. (6)

We also define Γ(N) = Γ(N)/{I,−I} for N = 1, 2 and Γ(N) = Γ(N) for N > 2. The groups Γ(N) are
infinite subgroups of the modular group. The quotient groups defined ΓN ≡ Γ/Γ(N) are finite subgroups
of the modular group, called finite modular groups. In the finite modular groups ΓN , generators obey
additional, algebraic relation TN = I. The groups ΓN with N = 2, 3, 4, 5 are isomorphic to S3, A4, S4,
and A5, respectively [7].

Modular forms f(τ) of weight k and level N are holomorphic functions transforming under the Γ(N)

as
f(γτ) = (cτ + d)kf(τ), γ ∈ Γ(N), (7)

where k is even and non-negative value and called modular weight. In the case of Γ3 % A4, the explicit
form of A4 triplet modular forms of wight 2 is obtained [6] in terms of the Dedekind eta-function η(τ),

η(τ) = q1/24
∞∏

n=1

(1− qn), (8)

where q = e2πiτ . A4 triplet modular forms of wight 2 [6] are given by Y A4(τ) = (Y1(τ), Y2(τ), Y3(τ))

where
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.

Superstring theory on the torus T 2 or orbifold T 2/ZN has the modular symmetry. Its low-energy
effective field theory is described in terms of supergravity theory, and the string-derived supergravity
theory has also the modular symmetry. Under the modular transformation (4), chiral superfields φ(I)

transform as [28],
φ(I) → (cτ + d)−kIρ(I)φ(I), (10)

where −kI is the modular weight and ρ(I)(γ) denotes an unitary representation matrix of γ ∈ ΓN . The
kinetic terms of their scalar components are written by

∑

I

|∂µφ(I)|2

〈−iτ + iτ̄〉kI (11)
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explain the BAU. However, it can be small as TeV scale if right-handed neutrinos are quasi-degenerate
in mass [27].

Furthermore, the sign of the BAU is controlled by the CP violation pattern in leptonic sector. Note
that the sign of the BAU cannot be predicted uniquely even if the CP violation associated with active
neutrinos (i.e., the Dirac and Majorana phases in the mixing matrix of active neutrinos) are determined.
This is because there exists one or more additional phases associated with right-handed neutrinos which
decouple from the low energy phenomena if right-handed neutrinos are sufficiently heavy. Under these
situations, it is interesting to investigate the sign and magnitude of the BAU in the models with the
modular symmetry, since there are non-trivial relations between the properties of right-handed neutrinos
and the low energy observables of neutrino physics due to the symmetry. As our first work, we shall
discuss the leptogenesis in the model with A4 symmetry [10] simply because the model has a small
number of free parameters and then very predictive.

The paper is organized as follows. In section 2, we briefly review the modular symmetry in the
framework of the theory with extra dimensions which is compactfied on a torus. We then explain the
model with the A4 symmetry in section 3. The leptognesis in the model is discussed in section 4. We
present in section 5 the results of the analysis, namely the sign and magnitude of the BAU predicted by
the model. The final section is devoted to discussions and conclusion.

2 Modular group and its finite subgroups

In this section, we give a brief review on the modular symmetry on a torus. A two-dimensional torus T 2

can be constructed by R2/Λ, where Λ denotes a two-dimensional lattice. We use the complex coordinate
on R2 and denote basis vectors of Λ as α1 = 2πR and α2 = 2πRτ , where R is real and τ is a modulus
belonging to upper-half complex plane Im τ > 0. There is some ambiguity in choice of the basis vectors.
The same lattice can be spanned by the following basis vectors,

(
α′
2

α′
1

)
=

(
a b
c d

)(
α2

α1

)
,

(
a b
c d

)
∈ SL(2,Z), (2)

where
SL(2,Z) =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
≡ Γ. (3)

This transformation of basis vectors is written in terms of the modulus τ ≡ α2/α1 by

τ → τ ′ = γτ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (4)

The modular group Γ is the transformation group acts on the modulus. Since γ and −γ transform τ in the
same way in (4), the modular group is isomorphic to SL(2,Z)/{I,−I}. The modular group is generated
by two generators S and T ,

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
(5)
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n Modular transformation

n Superpotential
¤ Modular invariant terms are obtained by matter multiplets

as well as the modular forms.
l Modular forms:  holomorphic functions of the modulus 𝜏

¤ Modular symmetry restricts the interaction terms in the 
superpotential, i.e., Yukawa coupling constants ! 
l Successful descriptions of masses and mixings of fermions

Y (ø) ! (cø+d)kY ΩY (∞)Y (ø) , (1)

°2 ' S3 , °3 ' A4 , °4 ' S4 , °5 ' A5 , · · · (2)
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S,T | S2 = 1 , (ST )3 = 1 , T N = 1

™
(3)

PSL(2, Z ) = SL(2, Z )
{1,°1}

(4)
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Active research topic !!

cΦ → cΦA = 𝑐𝜏 + 𝑑 #B! 𝜌C 𝛾 cΦ −𝑘7 : modular weight 
𝜌7 : representation matrix
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n Introduce a singlet multiplet g𝑆
¤ Origins of mu-term and Majorana masses

¤ Realistic masses and mixings of neutrinos 

L̂ Ê
c

1, Ê
c

2, Ê
c

3 N̂ c Ĥu Ĥd Ŝ Y
A4

SU (2)L 2 1 1 2 2 1 1

A4 3 1, 100, 10 3 1 1 3 3

M.W. °1 °1 °1 °1 °1 °1 +2

R ° ° ° + + + +

Table 1: The field content of the model. We show the representation of each field under SU (2)L gauge
group, modular A4 group, modular weight (M.W.), and R-parity (R).

are also combined in a triplet of A4 and right-handed charged lepton fields Ê
c

1, Ê
c

2, and Ê
c

3 are assigned

three distinct singlets 1, 100, and 10, respectively. The Higgs doublets Ĥu and Ĥd are both taken to be 1.

See the field content in Tab. 1.

Notice that the assignment of the modular weight for the Higgs fields is different from the one in

Ref. [10]. This is because we require the invariance of the Kähler transformation of the model. In this

case the modular weight of the superpotential is °1.

Further, we additionally introduce the gauge singlet Higgs field Ŝ, which transforms as 3 under the

modular A4 group,
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where q = exp(2ºiø). This modular form gives too simple mass matrices of neutrinos, both Dirac and

Majorana types, to explain the observed pattern of neutrino mixing. The VEV of Ŝ then induces the

Majorana masses of right-handed neutrinos with a complex structure, which leads to the successful fit

to the observational data. In addition, our assignment of the modular weights forbids the µ term of the

Higgs fields, which is also generated by the VEV of Ŝ.

The explicit form of the superpotential which is relevant for the following discussion is given by
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c

2, and Ê
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(ŜY

A4 )1N̂
c

N̂
c
¢

1 +h2
°
(ŜY
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c

3 N̂ c Ĥu Ĥd Ŝ Y
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c

2, Ê
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c

1, Ê
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Ŝ =

0

@
Ŝ1
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where k, f1,2,3, g1,2, and h1,2,3,4,5 are constant couplings, and 3s or 3a denotes the symmetric triplet or

anti-symmetric triplet of A4, respectively.

The VEV of Ŝ induces the µ term of the Higgs fields as

µ= k S1 , (4)

where SI = hŜI i (I = 1,2,3), which shows that S1 6= 0 is needed for µ 6= 0. Remember that we assume the

modular form (2) in the large volume limit. Here we have omitted the self couplings of Ŝ, i.e., the terms

with Ŝ
3 in the superpotential. We do not specify how the Ŝ field obtains the VEV, but simply assume its

pattern since it is beyond the scope of this analysis.

First, we find that the case with S1 6= 0, S2 = S3 = 0 is inconsistent with the neutrino oscillation data,

and hence we discard this possibility. We then consider the case in which the one VEV of three compo-

nents to be zero for simplicity.
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Since the µ term requires S1 6= 0, there are two possibilities S2 = 0 or S3 = 0. In this letter we show the

result with S3 = 0.

The mass matrix of charged leptons is given by
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0 f2 0
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1

A . (6)

Note that there are six possibilities the assignment of (Ê
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1, Ê
c

2, Ê
c

3) to three generations of right-handed

charged leptons (e
c , µc , øc ). This connection is represented by the matrix Pi j k . In this letter we present

the results with the case E
c

1 = e
c , E

c

2 =µc , and E
c

3 = øc . In this case Pi j k = diag(1,1,1).#1

The Dirac mass matrix of neutrinos takes the form

MD = hĤuiP
T

i j k

0
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2g1 0 0
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1
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and the Majorana mass matrix of right-handed neutrinos is
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#1 In general, there are two possibilities for the zero entry in the VEV of Ŝ and six possibilities for the assignment of
(Ê

c

1, Ê
c

2, Ê
c

3). One may then consider that there are twelve sets of mass matrices for leptonic fields. We find, however, that
the final mass matrix for active neutrinos through the seesaw matrix is classified into only three types. The details will be
discussed elsewhere [46].
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c

1, Ê
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T

i j k

0

BB@

2g1 0 0

0 0 °g1 + g2

0 °g1 ° g2 0

1

CCA , (7)

and the Majorana mass matrix of right-handed neutrinos is

MM =

0

BB@

(h1 +4h4)S1 0 (h2 +h4 +h5)S2

0 (h2 °2h4 °2h5)S2 (h1 °2h4)S1

(h2 +h4 +h5)S2 (h1 °2h4)S1 0

1

CCA . (8)

#1 In general, there are two possibilities for the zero entry in the VEV of Ŝ and six possibilities for the assignment of
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c

2, Ê
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(Ê

c

1, Ê
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pattern since it is beyond the scope of this analysis.

First, we find that the case with S1 6= 0, S2 = S3 = 0 is inconsistent with the neutrino oscillation data,

and hence we discard this possibility. We then consider the case in which the one VEV of three compo-

nents to be zero for simplicity.

hŜi=
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with Ŝ
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(Ê

c

1, Ê
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(Ê
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Then, the seesaw mechanism [41–45] generates the mass matrix of active neutrinos as
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So far, we have ignored the explicit form of the Kähler potential and just considered the Kähler metric

of lepton fields is diagonal. The Z3 symmetry is left in the large volume limit with the modular form in

Eq. (2), which ensures the diagonal form of the Kähler metric. Further, the corrections due to the VEV

of Ŝ can be suppressed by taking the VEV much smaller than the fundamental cutoff scale. It should be

noted that the field redefinition in the kinetic term can be absorbed by the redefinition in the parameters

b1,2,3. Thus, the predictions on the neutrino properties in this model, which will be discussed below, do

not change by the redefinition.

3 Properties of neutrinos

As explained above, the mass matrix of active neutrinos is described by one mass parameter§ and three

complex coupling parameters b1, b2, and b3. We perform the numerical analysis to find the parameter

region in which the predictions of the neutrino mixing angles µ12, µ23, µ13 and the mass squared dif-

ferences are consistent with the 3æ range of the global analysis given in Ref. [47]. Note that the mixing
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of Ŝ can be suppressed by taking the VEV much smaller than the fundamental cutoff scale. It should be

noted that the field redefinition in the kinetic term can be absorbed by the redefinition in the parameters

b1,2,3. Thus, the predictions on the neutrino properties in this model, which will be discussed below, do

not change by the redefinition.

3 Properties of neutrinos

As explained above, the mass matrix of active neutrinos is described by one mass parameter§ and three

complex coupling parameters b1, b2, and b3. We perform the numerical analysis to find the parameter

region in which the predictions of the neutrino mixing angles µ12, µ23, µ13 and the mass squared dif-

ferences are consistent with the 3æ range of the global analysis given in Ref. [47]. Note that the mixing

matrix of neutrinos is expressed as

U =

0

@
c12c13 s12c13 s13e

°i±CP

°c23s12 ° s23c12s13e
i±CP c23c12 ° s23s12s13e

i±CP s23c13

s23s12 ° c23c12s13e
i±CP °s23c12 ° c23s12s13e

i±CP c23c13

1

A£diag
≥
1, e

iÆ21/2 , e
iÆ31/2

¥
,

(14)

4

Note that the coupling h3 is irrelevant for the case with S3 = 0 under consideration.

Then, the seesaw mechanism [41–45] generates the mass matrix of active neutrinos as

M∫ =°M
T

D
M

°1
M

MD =§

0

BB@

1 b2 b3 b3

b2 b3 b1 b2 b1

b3 b1 b
2
3

1

CCA , (9)

where

§=°
4g

2
1 (h1 °2h4)2hĤui2
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n Only normal hierarchy fits the neutrino data

n Sum of neutrino masses

Figure 1: Predicted range of
P

mi and sin2µ23 shown by red dots. The solid and dashed vertical blue
lines show the central and 3æ range of the observed value of sin2µ23. The colored region is excluded by
the cosmological bound on

P
mi in Eq. (15).

where si j = sinµi j and ci j = cosµi j . ±CP and Æ21,31 are the Dirac and Majorana CP violating phases,

respectively. In addition we impose the cosmological constraint on the sum of neutrino masses [48]

3X

i=1
mi ∑ 0.160 eV. (15)
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Prediction: Dirac CPV phase
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n Clear predictions on CPV phasesδCP vs θ13

• We produce results with T2K 
data alone and using PDG2019 
constraint on θ13 from reactor 
experiments
• T2K only intervals are 

compatible with PDG2019 θ13
values at better than 1σ
• Results from here on are with 

reactor constraint

Patrick Dunne (p.dunne12@imperial.ac.uk) 25
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Prediction: Majorana CPV phases
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n Clear predictions on CPV phases



Neutrinoless double beta decay
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Figure 2: Predicted range of ±CP and sin2µ23 shown by red dots. The solid and dashed vertical blue lines
show the central and 3æ range of the observed value of sin2µ23. The colored region is excluded by the
cosmological bound on

P
mi in Eq. (15).

Figure 3: Predicted range of ±CP and Æ21 (left) or Æ31 (right) shown by red dots.

where Uei denotes the element of the neutrino mixing matrix. The predicted range of meff is

0.037 eV ∑ meff ∑ 0.047 eV, (17)

where the upper bound comes from Eq. (15). See Fig. 4. Notice that the most stringent bound on meff at

present comes from KamLAND-Zen experiment [51] as meff ∑ (0.061–0.165) eV. Interestingly, the forth-

coming KamLAND-Zen 800 experiment will explore the above range which is one of the crucial tests of

the model.

6

KamLAND-Zen 800 @TAUP2020
Slide by Y. Gando

Good target for
KamLAND-Zen 800



Part 2: 
NDBD in low-scale seesaw



NDBD decay in low-scale seesaw

n Both active neutrinos and HNLs contribute to NDBD

n Suppression Factor
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×
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Faessler, Gonzalez, Kovalenko, Simkovic ʼ14
Barea, Kotila, Iachello ʻ15
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Effective mass in low-scale seesaw

n Effective mass

n 𝑁I may give a significant
contribution to 𝑚:;; !

𝑚:;; = n
5J",!,'

𝑚5 𝑈,5! + n
3

𝑓F 𝑀3 𝑀3 Θ,3!

active neutrinos 𝝂L HNLs 𝑁I
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NDBD in low-scale seesaw
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n Constraint on the mixing Θ,3!

This bound cannot be applied to 
some cases in the seesaw mechanism !

Atre, Han, Pascoli, Zhang ʻ09

Θ,2%

𝑀2 [GeV]



0 = ,
+4#,%,-

𝑚+ 𝑈.+𝑈6+ +,
2

𝑀2 Θ.2 Θ62

n Neutrino mass matrix

Seesaw relation between mixings
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𝟎 = s𝑀G 4F
= c𝑈s𝑀G

M5NO c𝑈P
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9𝑀' =
𝟎 𝑀7
𝑀7
8 𝑀9
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n Effective mass

When all HNLs are lighter than 𝚲𝜷

2021/02/15Takehiko Asaka (Niigata Univ.)

37

𝑚:;; = 𝑚:;;
G + n

3

𝑓F 𝑀3 𝑀3 Θ,3!
When 𝑀3 ≪ 𝛬F ,
𝑓F 𝑀3 = 1

= 𝑚:;;
G + n

3

𝑀3 Θ,3!

= 0 0 = 𝑚/00
+ + H

:

𝑀: Θ2:(

NLDB is hidden by HNLs
even if lepton number is violated in the seesaw mechanism

Seesaw relation

Cf.  We have to include sub-leading corrections 
(EW loop corr., sub-leading corr. in seesaw etc.)



When all HNLs are degenerate
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n When all heavy neutrinos are degenerate 𝑀3 = 𝑀0,

𝑚:;; = 𝑚:;;
G +n

3

𝑓F 𝑀3 𝑀3 Θ,3! = 𝑚:;;
G + 𝑓F 𝑀0 n

3

𝑀0 Θ,3!

IH

TA, Eijima, Ishida ʻ11

p This shows 𝑚:;; does not depend 
on the mixing Θ,3

p Degenerate HNLs give always 
destructive contribution

= 𝑚)**
: [ 1 − 𝑓6 𝑀3 ]



NDBD and HNLs
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n HNLs in the seesaw mechanism may give a significant, 
constructive or destructive contribution to effective mass
depending on masses and mixing elements

n What can we learn about HNLs in the seesaw mechanism
by forthcoming NDBD experiments ?
¤ What if NDBD is unseen  ?
¤ What if NDBD is seen ?

n To make a simple discussion, we consider 
the minimal seesaw model with TWO right-handed neutrinos.  

𝑚/00 = 𝑚/00
+ + 𝑓< 𝑀' 𝑀'Θ2'( + 𝑓< 𝑀( 𝑀(Θ2((

𝑁" 𝑁!



What if NDBD is unseen?



HNL may hide NDBD
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n Effective mass

¤ 𝑚QLRST:UT = 0 in the minimal seesaw

n Consider 𝑀" ≪ 𝑀! (𝑁! decouple)

KamLAND-Zen PRL117, 082503 (ʻ16)

|𝑚:;;|
[meV]

𝑚/00 = 𝑚/00
+ + 𝑓< 𝑀' 𝑀'Θ2'( + 𝑓< 𝑀( 𝑀(Θ2((

𝑚:;; = 𝑚:;;
G + 𝑓F 𝑀" 𝑀"Θ,"! =0

Whatʼs happen ?

⟹ NDBD is hidden by HNL contribution 

|𝑚/00
+ | = 1.5 − 3.7meV (NH)

19 − 48 meV (IH)
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n Range of mixing element |Θ,"|! is predicted
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Figure 6: The region of the mixing element |£e1|2 for the vanishing effective neutrino mass (between two
red lines) in the NH (left panel) or IH (right panel) case. Here we vary the Majorana phase ¥= 0 to º. The
shaded regions are excluded by the direct searches for HNL. The dotted lines shows the sensitivities on
|£e1|2 by future search experiments.

we obtain
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8
>>>>>><
>>>>>>:

1
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"
m3 +m2

2

°
≥2 +1

¢1/2 ± m3 °m2

2
1° |A|2

p
(1° |A|2)2 +4ReA2

#
for the NH case

1
M1

"
m2 +m1
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°
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¢1/2 ± m2 °m1

2
1° |A|2

p
(1° |A|2)2 +4ReA2

#
for the IH case

, (32)

We show in Fig. 7 the maximal and minimum values of |£1|2 by varying the value of ¥ as a free parameter.

Note here that |£1|2 in the considering case is bounded from below [48] by considering X! = 1 and!r = 0

as

|£1|2 ∏
m§
M1

, (33)

where m§ = m2 or m1 for the NH or IH case, respectively. This bound is also shown in Fig. 7 as the black

line. It is thus found that |£1|2 becomes proportional to M1 for M1 &§Ø, and hence a wide region of our

possibility can be tested by future experiments together with the null observation of the 0∫ØØ decay.

Finally, we mention the properties of heavier HNL N2. We have assumed so far that its mass is much

heavier than §Ø so that N2 decouples from the 0∫ØØ decay process. On the other hand, since X! ¿ 1

or X °1
! ¿ 1 as M1 gets heavier, the Yukawa coupling constants of N2 become rather large and exceed

the perturbative values when the mass of N2 becomes large. See, for example, Ref. [48]. Since all other

parameters than M2 are already fixed by the conditions related to N1 or observables of the neutrino

11

TA, Ishida, Tanaka arXiv:2012.13186
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n Flavor structure of mixing elements (|Θ,"|!, |Θ-"|!, |Θ."|!)
depends on mass ordering and Majorana phase

TA, Ishida, Tanaka arXiv:2012.13186
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Figure 5: The mixing elements |£Æ1|2 for the vanishing effective neutrino mass in the NH (upper panel)
or IH (lower panel). The left or right panel is for the case with !=!+ or !=!° in Eq. (21), respectively.
Here we take the N1 mass M1 = 1 GeV.

In Fig. 6 we show the range of the mixing element |£e1|2 by varying the Majorana phase from ¥ = 0

to º in terms of M1. The dependence on M1 drastically changes at around M1 = §Ø correlating with

Eq. (15). Namely, since M1 gets exceed §Ø, fØ works as a suppression factor, the mixing element |£e1|2

has to become larger (by enlarging X! or X °1
! ) to realize the cancellation of the effective mass. This

feature is advantageous for the direct search experiments. In Fig. 6 we also show the current bounds

from various searches [49–51] and also the sensitivities by the future experiments [52–55]. It is seen that

a wide range of |£e1|2 can be probed by the future experiments, especially for the IH case. On the other

hand, the results of other elements, |£µ1|2 and |£ø1|2, are shown in Appendix B.

Furthermore, the sum of the N1 mixing elements is given by
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Since the cancellation in meff requires the specific values of !r and X! as shown in Eqs. (22) and (26),
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In Fig. 6 we show the range of the mixing element |£e1|2 by varying the Majorana phase from ¥ = 0

to º in terms of M1. The dependence on M1 drastically changes at around M1 = §Ø correlating with

Eq. (15). Namely, since M1 gets exceed §Ø, fØ works as a suppression factor, the mixing element |£e1|2

has to become larger (by enlarging X! or X °1
! ) to realize the cancellation of the effective mass. This

feature is advantageous for the direct search experiments. In Fig. 6 we also show the current bounds

from various searches [49–51] and also the sensitivities by the future experiments [52–55]. It is seen that

a wide range of |£e1|2 can be probed by the future experiments, especially for the IH case. On the other

hand, the results of other elements, |£µ1|2 and |£ø1|2, are shown in Appendix B.

Furthermore, the sum of the N1 mixing elements is given by
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Since the cancellation in meff requires the specific values of !r and X! as shown in Eqs. (22) and (26),
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What if NDBD is observed ?



HNL may enhance/suppress NDBD
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n Effective mass

n If NDBD is seen at 𝑚:;; = 𝑚:;;
VWU, 

𝑚/00 = 𝑚/00
+ + 𝑓< 𝑀' 𝑀'Θ2'( + 𝑓< 𝑀( 𝑀(Θ2((

0 = 𝑚/00
+ + 𝑀'Θ2'( + 𝑀(Θ2((

2

discuss the impacts on the mixing elements of RH⌫s.
First of all, let us explain the framework of the present

analysis, the minimal seesaw model. It is the Standard
Model extended by two right-handed neutrinos ⌫RI (I =
1, 2), which Lagrangian is given by

L =LSM + i⌫RI�
µ@µ⌫RI

�

✓
F↵IL↵�⌫RI +

MI

2
⌫cRI⌫RI + h.c.

◆
, (1)

where L↵ = (⌫L↵, eL↵)T (↵ = e, µ, ⌧) and � are the weak
doublets of left-handed lepton and Higgs, respectively.
The Yukawa coupling constants and the Majorana masses
for neutrinos are denoted by F↵I and MI . By assuming
that the Dirac masses F↵Ih�i are much smaller than the
Majorana mass MI , the seesaw mechanism works, and
the mass eigenstates of neutrinos are three active neutri-
nos ⌫i (i = 1, 2, 3) with masses mi and two heavy neutral
leptons (HNLs) NI with masses MI .

The mass ordering of active neutrinos is not deter-
mined by the oscillation data, and two possibilities, the
normal hierarchy (NH) with m3 > m2 > m1 = 0 and the
inverted hierarchy (IH) with m2 > m1 > m3 = 0, are
allowed. Note that the lightest active neutrino is mass-
less in the considering situation. On the other hand, we
can take the masses of HNLs as M2 � M1 without loss
of generality. The left-handed (flavor) neutrinos are then
written as

⌫L↵ =
X

i

U↵i ⌫i +
X

I

⇥↵I N
c
I , (2)

where U↵i is the mixing matrix of active neutrinos called
as the PMNS matrix while ⇥↵I is that of HNLs.

One of the most important consequences of the seesaw
mechanism is that active neutrinos and HNLs are both
Majorana particles. In this case the lepton number vio-
lating processes are induced by these particles, which is a
clear signature of physics beyond the SM. One promising
example is the 0⌫�� decay, and the quest for the decay
is going on by various experiments.

The rate for the 0⌫�� decay mediated by active neu-
trinos and HNLs is proportional |me↵ |

2, where me↵ is the
so-called e↵ective (neutrino) mass in the 0⌫�� decay. In
the minimal seesaw model it is given by

me↵ = m⌫
e↵ +mN

e↵ . (3)

Here the first term in the right-hand side represents the
contributions from the active neutrinos, which is given
by

m⌫
e↵ =

X

i

U2
ei mi . (4)

On the other hand, the contributions from HNLs are ex-
pressed as

mN
e↵ =

X

I

⇥2
eI MI f�(MI) , (5)
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FIG. 1: Upper and lower bounds on |⇥e1|2 for the NH (red
solid lines) and IH (blue dashed lines) cases. Here M1 =
1 GeV and M2 = 200 GeV.

where f� is the suppression factor compared to m⌫
e↵ due

to the heaviness of HNLs MI � mi. Here we apply the
result in Ref. [24, 25] and assume the following form

f�(M) =
⇤2
�

⇤2
� +M2

, (6)

where ⇤� = O(102) MeV denotes the typical scale of the
Fermi momentum in the 0⌫�� decay. Hereafter we take
⇤� = 200 MeV as a representative value.
In this letter we consider the impacts of the detection of

the 0⌫�� decay by future experiments on the properties
of HNLs. The measurement of the decay rate gives the
value of |me↵ |. Note that me↵ is a complex number.
First, we consider the case when right-handed neutrinos
possess the hierarchical masses M2 � M1. We then find
that the mixing element |⇥e1|

2 of the lighter HNL is given
by

⇥2
e1 =

me↵ �m⌫
e↵ [1� f�(M2)]

M1 [f�(M1)� f�(M2)]
. (7)

Here we have used the intrinsic relation between mixing
elements in the seesaw mechanism

0 =
X

i

U2
ei mi +

X

I

⇥2
eI MI . (8)

Importantly, the mixing element |⇥e1|
2 is given by me↵

and m⌫
e↵ together with masses M1 and M2. This means

that, if |me↵ | is found by the detection of the 0⌫�� de-
cay, the range of |⇥e1|

2 can be predicted. In practice
both upper and lower bounds on |⇥e1|

2 are obtained by
varying the unknown parameters in m⌫

e↵ (i.e., the Ma-
jorana phase ⌘ and the mass ordering) and the phase of
me↵ .
When M1 = 1 GeV and M2 = 200 GeV, these bounds

are shown in Fig. 1 in terms of the (would-be) observed
value of |me↵ | denoted by mobs

e↵ . In the present analysis
we take the central values of the mass squared di↵erences,
the mixing angles and the Dirac phase in the PMNS ma-
trix given in Ref. [26] for the estimation of |m⌫

e↵ |. We

Seesaw relation

Hierarchical HNLs 𝑀( > 𝑀'

Whatʼs happen ?
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discuss the impacts on the mixing elements of RH⌫s.
First of all, let us explain the framework of the present

analysis, the minimal seesaw model. It is the Standard
Model extended by two right-handed neutrinos ⌫RI (I =
1, 2), which Lagrangian is given by

L =LSM + i⌫RI�
µ@µ⌫RI

�

✓
F↵IL↵�⌫RI +

MI

2
⌫cRI⌫RI + h.c.

◆
, (1)

where L↵ = (⌫L↵, eL↵)T (↵ = e, µ, ⌧) and � are the weak
doublets of left-handed lepton and Higgs, respectively.
The Yukawa coupling constants and the Majorana masses
for neutrinos are denoted by F↵I and MI . By assuming
that the Dirac masses F↵Ih�i are much smaller than the
Majorana mass MI , the seesaw mechanism works, and
the mass eigenstates of neutrinos are three active neutri-
nos ⌫i (i = 1, 2, 3) with masses mi and two heavy neutral
leptons (HNLs) NI with masses MI .

The mass ordering of active neutrinos is not deter-
mined by the oscillation data, and two possibilities, the
normal hierarchy (NH) with m3 > m2 > m1 = 0 and the
inverted hierarchy (IH) with m2 > m1 > m3 = 0, are
allowed. Note that the lightest active neutrino is mass-
less in the considering situation. On the other hand, we
can take the masses of HNLs as M2 � M1 without loss
of generality. The left-handed (flavor) neutrinos are then
written as

⌫L↵ =
X

i

U↵i ⌫i +
X

I

⇥↵I N
c
I , (2)

where U↵i is the mixing matrix of active neutrinos called
as the PMNS matrix while ⇥↵I is that of HNLs.

One of the most important consequences of the seesaw
mechanism is that active neutrinos and HNLs are both
Majorana particles. In this case the lepton number vio-
lating processes are induced by these particles, which is a
clear signature of physics beyond the SM. One promising
example is the 0⌫�� decay, and the quest for the decay
is going on by various experiments.

The rate for the 0⌫�� decay mediated by active neu-
trinos and HNLs is proportional |me↵ |

2, where me↵ is the
so-called e↵ective (neutrino) mass in the 0⌫�� decay. In
the minimal seesaw model it is given by

me↵ = m⌫
e↵ +mN

e↵ . (3)

Here the first term in the right-hand side represents the
contributions from the active neutrinos, which is given
by

m⌫
e↵ =

X

i

U2
ei mi . (4)

On the other hand, the contributions from HNLs are ex-
pressed as

mN
e↵ =

X

I

⇥2
eI MI f�(MI) , (5)
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FIG. 1: Upper and lower bounds on |⇥e1|2 for the NH (red
solid lines) and IH (blue dashed lines) cases. Here M1 =
1 GeV and M2 = 200 GeV.

where f� is the suppression factor compared to m⌫
e↵ due

to the heaviness of HNLs MI � mi. Here we apply the
result in Ref. [24, 25] and assume the following form

f�(M) =
⇤2
�

⇤2
� +M2

, (6)

where ⇤� = O(102) MeV denotes the typical scale of the
Fermi momentum in the 0⌫�� decay. Hereafter we take
⇤� = 200 MeV as a representative value.
In this letter we consider the impacts of the detection of

the 0⌫�� decay by future experiments on the properties
of HNLs. The measurement of the decay rate gives the
value of |me↵ |. Note that me↵ is a complex number.
First, we consider the case when right-handed neutrinos
possess the hierarchical masses M2 � M1. We then find
that the mixing element |⇥e1|

2 of the lighter HNL is given
by

⇥2
e1 =

me↵ �m⌫
e↵ [1� f�(M2)]

M1 [f�(M1)� f�(M2)]
. (7)

Here we have used the intrinsic relation between mixing
elements in the seesaw mechanism

0 =
X

i

U2
ei mi +

X

I

⇥2
eI MI . (8)

Importantly, the mixing element |⇥e1|
2 is given by me↵

and m⌫
e↵ together with masses M1 and M2. This means

that, if |me↵ | is found by the detection of the 0⌫�� de-
cay, the range of |⇥e1|

2 can be predicted. In practice
both upper and lower bounds on |⇥e1|

2 are obtained by
varying the unknown parameters in m⌫

e↵ (i.e., the Ma-
jorana phase ⌘ and the mass ordering) and the phase of
me↵ .
When M1 = 1 GeV and M2 = 200 GeV, these bounds

are shown in Fig. 1 in terms of the (would-be) observed
value of |me↵ | denoted by mobs

e↵ . In the present analysis
we take the central values of the mass squared di↵erences,
the mixing angles and the Dirac phase in the PMNS ma-
trix given in Ref. [26] for the estimation of |m⌫

e↵ |. We
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FIG. 2: Upper and lower bounds on |⇥e1|2 for the NH (left)
and IH (right) cases. We takemobs

e↵ =100 meV (red sold lines),
50 meV (blue dashed lines), and 10 meV (green dot-dashed
lines). Here M2 = 200 GeV. The current (conservative) up-
per bound on |⇥e1|2 from |me↵ | < 165 meV is shown by black
solid line (and the light-gray region is exluded). The dark-
gray regions are excluded by the direct search experiments.
The dotted lines shows the sensitivities by the future experi-
ments. See the detail in the main text.

find that |m⌫
e↵ | = 1.45–3.68 meV and 18.6–48.4 meV

for the NH and IH cases, respectively. It is found from
Eq. (7) that the lower bound on |⇥e1|

2 vanishes when
mobs

e↵ = |m⌫
e↵ |(1� f�(M2)).

The predicted range of |⇥e1|
2 is shown in Fig. 2 where

the current upper bounds and the sensitivities on |⇥e1|
2

by future search experiments are also shown [27–33]. We
take the (would-be) observed value of the e↵ective mass
as |me↵ | = 100 meV, 50 meV, and 10 meV. Importantly,
the most of the predicted range can be tested by the
future experiments.

We should note that the understanding of f�(M) is im-
portant for the precise prediction of the mixing elements,
since it contains the uncertainty of the order unity. For
this purpose the better understanding of the nuclear ma-
trix elements of the 0⌫�� decay mediated by HNL is
crucial.

Next, let us consider the case when the masses of HNLs
are degenerate

M1 = M2 = MN . (9)

In this case, the total e↵ective mass is given by

me↵ = m⌫
e↵ [1� f�(MN )] , (10)

and hence the total value is always smaller than the that
from active neutrinos |me↵ | < |m⌫

e↵ | as long as HNLs
participate the 0⌫�� decay. Note that the arguments of
me↵ and m⌫

e↵ are the same. In this case, we find the
interesting consequences if |me↵ | is measured: First, the
mass of degenerate HNLs is determined depending on the
measured value of |me↵ | as

MN = ⇤�

s
mobs

e↵

|m⌫
e↵ |�mobs

e↵

. (11)
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FIG. 3: The degenerate mass MN and mixing element |⇥2
e1+

⇥2
e2| in terms of the observed value mobs

e↵ in the NH (red solid
line) or IH (blue dashed line). We take the Majorana phase
⌘ = 0.
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FIG. 4: Range of the mixing element |⇥2
e1 + ⇥2

e2| in terms
of the degenerate mass MN by taking the Majorana phase
⌘ = 0–⇡ in the NH (red solid line) or IH (blue dashed line).

This shows that, once mobs
e↵ is fixed, the unknown Majo-

rana phase in m⌫
e↵ determines MN . Second, the sum of

the mixing elements is found to be

��⇥2
e1 +⇥2

e2

�� = |m⌫
e↵ |

⇤�

s
|m⌫

e↵ |�mobs
e↵

mobs
e↵

. (12)

These results are shown in Fig. 3. Here we take the
Majorana phase as ⌘ = 0, and |m⌫

e↵ | = 3.54 meV and
48.4 meV for the NH and IH cases, respectively. It is seen
that the observed e↵ective mass mobs

e↵ of a few 10 meV
corresponds to the Majorana mass MN ' O(0.1�1) GeV
and the mass ordering is the IH since HNL contributions
are always destructive to the active neutrino ones. The
relation between MN and |⇥2

e1 +⇥2
e2| is shown in Fig. 4.

We find that in order to test the degenerate case the
improvement of the sensitivity by future experiments is
required especially for the NH case.

Before concluding the paper, we stress the impact
of the di↵erence among the 0⌫�� decay nuclei [21].
Throughout this paper, we have assumed the approx-
imated form of the suppression function f� to be
Eq. (6) and fixed the typical Fermi momentum as ⇤� =
200 MeV. The important point is that the nuclear matrix
elements including the suppression factor due to HNLs

𝑚/00
9=>=100meV (red), 50meV (blue), 10meV (green)
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X | in the degenerate HNL case3
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FIG. 2: Upper and lower bounds on |⇥e1|2 for the NH (left)
and IH (right) cases. We takemobs

e↵ =100 meV (red sold lines),
50 meV (blue dashed lines), and 10 meV (green dot-dashed
lines). Here M2 = 200 GeV. The current (conservative) up-
per bound on |⇥e1|2 from |me↵ | < 165 meV is shown by black
solid line (and the light-gray region is exluded). The dark-
gray regions are excluded by the direct search experiments.
The dotted lines shows the sensitivities by the future experi-
ments. See the detail in the main text.

find that |m⌫
e↵ | = 1.45–3.68 meV and 18.6–48.4 meV

for the NH and IH cases, respectively. It is found from
Eq. (7) that the lower bound on |⇥e1|

2 vanishes when
mobs

e↵ = |m⌫
e↵ |(1� f�(M2)).

The predicted range of |⇥e1|
2 is shown in Fig. 2 where

the current upper bounds and the sensitivities on |⇥e1|
2

by future search experiments are also shown [27–33]. We
take the (would-be) observed value of the e↵ective mass
as |me↵ | = 100 meV, 50 meV, and 10 meV. Importantly,
the most of the predicted range can be tested by the
future experiments.

We should note that the understanding of f�(M) is im-
portant for the precise prediction of the mixing elements,
since it contains the uncertainty of the order unity. For
this purpose the better understanding of the nuclear ma-
trix elements of the 0⌫�� decay mediated by HNL is
crucial.

Next, let us consider the case when the masses of HNLs
are degenerate

M1 = M2 = MN . (9)

In this case, the total e↵ective mass is given by

me↵ = m⌫
e↵ [1� f�(MN )] , (10)

and hence the total value is always smaller than the that
from active neutrinos |me↵ | < |m⌫

e↵ | as long as HNLs
participate the 0⌫�� decay. Note that the arguments of
me↵ and m⌫

e↵ are the same. In this case, we find the
interesting consequences if |me↵ | is measured: First, the
mass of degenerate HNLs is determined depending on the
measured value of |me↵ | as

MN = ⇤�

s
mobs

e↵

|m⌫
e↵ |�mobs

e↵

. (11)
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FIG. 3: The degenerate mass MN and mixing element |⇥2
e1+

⇥2
e2| in terms of the observed value mobs

e↵ in the NH (red solid
line) or IH (blue dashed line). We take the Majorana phase
⌘ = 0.
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FIG. 4: Range of the mixing element |⇥2
e1 + ⇥2

e2| in terms
of the degenerate mass MN by taking the Majorana phase
⌘ = 0–⇡ in the NH (red solid line) or IH (blue dashed line).

This shows that, once mobs
e↵ is fixed, the unknown Majo-

rana phase in m⌫
e↵ determines MN . Second, the sum of

the mixing elements is found to be

��⇥2
e1 +⇥2

e2

�� = |m⌫
e↵ |

⇤�

s
|m⌫

e↵ |�mobs
e↵

mobs
e↵

. (12)

These results are shown in Fig. 3. Here we take the
Majorana phase as ⌘ = 0, and |m⌫

e↵ | = 3.54 meV and
48.4 meV for the NH and IH cases, respectively. It is seen
that the observed e↵ective mass mobs

e↵ of a few 10 meV
corresponds to the Majorana mass MN ' O(0.1�1) GeV
and the mass ordering is the IH since HNL contributions
are always destructive to the active neutrino ones. The
relation between MN and |⇥2

e1 +⇥2
e2| is shown in Fig. 4.

We find that in order to test the degenerate case the
improvement of the sensitivity by future experiments is
required especially for the NH case.

Before concluding the paper, we stress the impact
of the di↵erence among the 0⌫�� decay nuclei [21].
Throughout this paper, we have assumed the approx-
imated form of the suppression function f� to be
Eq. (6) and fixed the typical Fermi momentum as ⇤� =
200 MeV. The important point is that the nuclear matrix
elements including the suppression factor due to HNLs

3
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FIG. 2: Upper and lower bounds on |⇥e1|2 for the NH (left)
and IH (right) cases. We takemobs

e↵ =100 meV (red sold lines),
50 meV (blue dashed lines), and 10 meV (green dot-dashed
lines). Here M2 = 200 GeV. The current (conservative) up-
per bound on |⇥e1|2 from |me↵ | < 165 meV is shown by black
solid line (and the light-gray region is exluded). The dark-
gray regions are excluded by the direct search experiments.
The dotted lines shows the sensitivities by the future experi-
ments. See the detail in the main text.

find that |m⌫
e↵ | = 1.45–3.68 meV and 18.6–48.4 meV

for the NH and IH cases, respectively. It is found from
Eq. (7) that the lower bound on |⇥e1|

2 vanishes when
mobs

e↵ = |m⌫
e↵ |(1� f�(M2)).

The predicted range of |⇥e1|
2 is shown in Fig. 2 where

the current upper bounds and the sensitivities on |⇥e1|
2

by future search experiments are also shown [27–33]. We
take the (would-be) observed value of the e↵ective mass
as |me↵ | = 100 meV, 50 meV, and 10 meV. Importantly,
the most of the predicted range can be tested by the
future experiments.

We should note that the understanding of f�(M) is im-
portant for the precise prediction of the mixing elements,
since it contains the uncertainty of the order unity. For
this purpose the better understanding of the nuclear ma-
trix elements of the 0⌫�� decay mediated by HNL is
crucial.

Next, let us consider the case when the masses of HNLs
are degenerate

M1 = M2 = MN . (9)

In this case, the total e↵ective mass is given by

me↵ = m⌫
e↵ [1� f�(MN )] , (10)

and hence the total value is always smaller than the that
from active neutrinos |me↵ | < |m⌫

e↵ | as long as HNLs
participate the 0⌫�� decay. Note that the arguments of
me↵ and m⌫

e↵ are the same. In this case, we find the
interesting consequences if |me↵ | is measured: First, the
mass of degenerate HNLs is determined depending on the
measured value of |me↵ | as

MN = ⇤�

s
mobs

e↵

|m⌫
e↵ |�mobs

e↵

. (11)
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FIG. 3: The degenerate mass MN and mixing element |⇥2
e1+

⇥2
e2| in terms of the observed value mobs

e↵ in the NH (red solid
line) or IH (blue dashed line). We take the Majorana phase
⌘ = 0.
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FIG. 4: Range of the mixing element |⇥2
e1 + ⇥2

e2| in terms
of the degenerate mass MN by taking the Majorana phase
⌘ = 0–⇡ in the NH (red solid line) or IH (blue dashed line).

This shows that, once mobs
e↵ is fixed, the unknown Majo-

rana phase in m⌫
e↵ determines MN . Second, the sum of

the mixing elements is found to be

��⇥2
e1 +⇥2

e2

�� = |m⌫
e↵ |

⇤�

s
|m⌫

e↵ |�mobs
e↵

mobs
e↵

. (12)

These results are shown in Fig. 3. Here we take the
Majorana phase as ⌘ = 0, and |m⌫

e↵ | = 3.54 meV and
48.4 meV for the NH and IH cases, respectively. It is seen
that the observed e↵ective mass mobs

e↵ of a few 10 meV
corresponds to the Majorana mass MN ' O(0.1�1) GeV
and the mass ordering is the IH since HNL contributions
are always destructive to the active neutrino ones. The
relation between MN and |⇥2

e1 +⇥2
e2| is shown in Fig. 4.

We find that in order to test the degenerate case the
improvement of the sensitivity by future experiments is
required especially for the NH case.

Before concluding the paper, we stress the impact
of the di↵erence among the 0⌫�� decay nuclei [21].
Throughout this paper, we have assumed the approx-
imated form of the suppression function f� to be
Eq. (6) and fixed the typical Fermi momentum as ⇤� =
200 MeV. The important point is that the nuclear matrix
elements including the suppression factor due to HNLs
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n Effective mass
¤ Active neutrino contribution

¤ HNL contribution

𝑚:;;
G =n

5

𝑚5𝑈,5! independent on decay nuclei

𝑚:;;
0 =n

3

𝑓F 𝑀3 𝑀3 Θ,3!

𝑓F 𝑀3 =
ΛF
!

ΛF
! +𝑀3

!

dependent on decay nuclei !

Multiple detection/non-detection by NDBD using different nuclei
is crucial to reveal the properties of HNLs in the seesaw mechanism
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n We have investigated NDBD in the seesaw mechanism
¤ Active neutrinos and HNLs are both Majorana fermions
¤ NDBD is an important test of the seesaw mechanism, i.e. 

to reveal the properties of HNLs (right-handed neutrinos)

n Part 1: NDBD in the high-scale seesaw mechanism
¤ Active neutrino contribution depends on mass ordering, lightest 

neutrino mass and CP phases
¤ Flavor symmetry (e.g. modular symmetry) can restrict the 

predicted range of the effective mass, which will be faced with near 
future experiments

n Part 2: NDBD in the low-scale seesaw mechanism
¤ HNLs can give a significant destructive/constructive effect
¤ Range of the mixing elements of HNLs can be found, 

which is a good target for future direct search experiments
¤ Mass ordering and CP phases can be studied through the flavor 

structure of the mixing elements of HNLs


