**VERIFICATION OF TL-208 BACKGROUNDS REDUCTION FOR NEUTRINOLESS DOUBLE** BETA DECAY WITH HALF-LIFE 10 TO 27TH YEARS USING ZR-96 研究会「ニュートリノを伴わない二重ベータ崩壊とその周辺」 12<sup>th</sup> February, 2021 Grant-in-Aid for Scientific Research on Innovation 19H05093 and 20H05241 Miyagi University of Education Y. Fukuda, Marengerile, A. Obata, Y. Kamei, D. Anzai Kamioka Observatory, ICRR, Univ. of Tokyo S. Moriyama, K. Hiraide Fukui Universify I. Ogawa Tokyo University of Science T. Gunji, S. Tsukada, R. Hayami Institute for Materials Research, Tohoku University S. Kurosawa

#### Neutrinoless double beta decay

 $\beta\beta$  emitters with  $Q_{\beta\beta} > 2$  Mev ββον Transition  $Q_{\beta\beta}$  (keV) Abundance (%)  $(^{232}Th = 100)$ 0.6 unites arbitraires  $^{110}Pd \rightarrow ^{110}Cd$ 2013 12  $^{76}Ge \rightarrow ^{76}Se$ 2040 8 ββ2ν  $^{124}Sn \rightarrow ^{124}Te$ 2288 6 0.4  $^{136}Xe \rightarrow ^{136}Ba$ 2479 g  $^{130}$  Te  $\rightarrow$   $^{130}$  Xe 2533 34  $^{116}Cd \rightarrow ^{116}Sn$ 2802 7 0.2  $^{82}Se \rightarrow ^{82}Kr$ 2995 g  $^{100}Mo \rightarrow ^{100}Ru$ 3034 10 <sup>96</sup>Zr →<sup>96</sup> Mo 3350 3  $^{150}Nd \rightarrow ^{150}Sm$ 3667 6 0.5  $^{48}Ca \rightarrow ^{48}Ti$ 4271 0.2  $(T_1 + T_2)/Q_{\beta\beta}$ 

 $[T_{1/2}^{0\nu}]^{-1} = G_{0\nu}(E_0,Z) | M_{0\nu}|^2 < m_{\beta\beta}^2 / m_e^2$ 

 $T_{1/2} \sim a(Mt/\Delta E \cdot B)^{1/2}$  a: abundance M: target mass

t: measuring time  $\Delta E$ : energy resolution B: BG rate

Requirement : Low BG, Large target mass, Good E-resolution

#### <u>Future Neutrinoless double beta decay</u> <u>experiments</u>





Jason Detwiler, University of Washington Neutrino 2020 - Virtual Meeting



1 July 2020





#### Current limits and future goal

- Present best limits:
  - $^{136}$ Xe (KamLAND-Zen):  $T_{1/2} > 10^{26}$  yrs
  - $^{76}$ Ge (GERDA):  $T_{1/2} > 10^{26}$  yrs
  - <sup>130</sup>Te (CUORE):  $T_{1/2} > 3 \times 10^{25}$  yrs
- Future goal:
   ~2 OoM improvement in T<sub>1/2</sub>
  - Covers IO
  - Up to 50% of NO
  - Factor of  $\sim$ few in  $\Lambda$
  - An aggressive experimental goal

J.Detwiler@nu2020



# To cover IH region, measure T<sub>1/2</sub>≧10<sup>27</sup> years To reach NH region, need T<sub>1/2</sub>~10<sup>28</sup> years measuring

### <u>Techniques for Neutrinoless double beta</u> <u>decay experiment</u>

# **Experimental Techniques**

g

- Bolometers (CUPID, AMoRE, CANDLES IV)
  - Measure *E* ( $\sigma \sim 0.1$ -0.3%) from phonons; granularity gives position info
  - Instrumenting with photon detectors for background rejection
- External trackers (SuperNEMO) MTD
  - Trackers + calorimeters, measure  $E(\sigma \sim 3-10\%)$  + tracks / positions + PID
- Scintillators (KamLAND2-Zen, SNO+, Theia ZICOS)
  - Measure  $E (\sigma \sim 3-10\%)$  + position from scintillation light; some PID
- Semiconductors (LEGEND, SELENA)
  - Measure E ( $\sigma \sim 0.05$ -0.3%) from ionization; some tracking / position sensitivity
- TPCs (nEXO, NEXT, PandaX, AXEL, NvDEx, DARWIN, LZ)
  - Collect scintillation + ionization: measure  $E(\sigma \sim 0.4-3\%)$  + tracks / position + PID

#### J.Detwiler@nu2020



CANDLES





EXO-200





CUORE



MAJORANA





## Experiments

| Collaboration          | Isotope                 | Technique                                                 | mass<br>(0vββ isotope) | Status       |
|------------------------|-------------------------|-----------------------------------------------------------|------------------------|--------------|
| CANDLES-III            | <sup>48</sup> Ca        | 305 kg CaF <sub>2</sub> crystals in liquid scintillator   | 0.3 kg                 | Operating    |
| CANDLES-IV             | <sup>48</sup> Ca        | CaF <sub>2</sub> scintillating bolometers                 | TBD                    | R&D          |
| GERDA                  | <sup>76</sup> Ge        | Point contact Ge in active LAr                            | 44 kg                  | Complete     |
| MAJORANA DEMONSTRATOR  | <sup>76</sup> Ge        | Point contact Ge in Lead                                  | 30 kg                  | Operating    |
| LEGEND 200             | <sup>76</sup> Ge        | Point contact Ge in active LAr                            | 200 kg                 | Construction |
| LEGEND 1000            | <sup>76</sup> Ge        | Point contact Ge in active LAr                            | 1 tonne                | R&D          |
| SuperNEMO Demonstrator | <sup>82</sup> Se        | Foils with tracking                                       | 7 kg                   | Construction |
| SELENA                 | <sup>82</sup> Se        | Se CCDs                                                   | <1 kg                  | R&D          |
| NvDEx                  | <sup>82</sup> Se        | SeF <sub>6</sub> high pressure gas TPC                    | 50 kg                  | R&D          |
| ZICOS                  | <sup>96</sup> Zr        | 10% natZr in liquid scintillator                          | 45 kg                  | R&D          |
| AMoRE-I                | <sup>100</sup> Mo       | <sup>40</sup> CaMoO <sub>4</sub> scintillating bolometers | 6 kg                   | Construction |
| AMoRE-II               | <sup>100</sup> Mo       | Li <sub>2</sub> MoO <sub>4</sub> scintillating bolometers | 100 kg                 | Construction |
| CUPID                  | <sup>100</sup> Mo       | Li <sub>2</sub> MoO <sub>4</sub> scintillating bolometers | 250 kg                 | R&D          |
| COBRA                  | <sup>116</sup> Cd/130Te | CdZnTe detectors                                          | 10 kg                  | Operating    |
| CUORE                  | <sup>130</sup> Te       | TeO <sub>2</sub> Bolometer                                | 206 kg                 | Operating    |
| SNO+                   | <sup>130</sup> Te       | 0.5% natTe in liquid scintillator                         | 1300 kg                | Construction |
| SNO+ Phase II          | <sup>130</sup> Te       | 2.5% natTe in liquid scintillator                         | 8 tonnes               | R&D          |
| Theia-Te               | <sup>130</sup> Te       | 5% natTe in liquid scintillator                           | 31 tonnes              | R&D          |
| KamLAND-Zen 400        | <sup>136</sup> Xe       | 2.7% in liquid scintillator                               | 370 kg                 | Complete     |
| KamLAND-Zen 800        | <sup>136</sup> Xe       | 2.7% in liquid scintillator                               | 750 kg                 | Operating    |
| KamLAND2-Zen           | <sup>136</sup> Xe       | 2.7% in liquid scintillator                               | ~tonne                 | R&D          |
| EXO-200                | <sup>136</sup> Xe       | Xe liquid TPC                                             | 160 kg                 | Complete     |
| nEXO                   | <sup>136</sup> Xe       | Xe liquid TPC                                             | 5 tonnes               | R&D          |
| NEXT-WHITE             | <sup>136</sup> Xe       | High pressure GXe TPC                                     | ~5 kg                  | Operating    |
| NEXT-100               | <sup>136</sup> Xe       | High pressure GXe TPC                                     | 100 kg                 | Construction |
| PandaX                 | <sup>136</sup> Xe       | High pressure GXe TPC                                     | ~tonne                 | R&D          |
| AXEL                   | <sup>136</sup> Xe       | High pressure GXe TPC                                     | ~tonne                 | R&D          |
| DARWIN                 | <sup>136</sup> Xe       | <sup>nat</sup> Xe liquid TPC                              | 3.5 tonnes             | R&D          |
| LZ                     | <sup>136</sup> Xe       | natXe liquid TPC                                          |                        | R&D          |
| Theia-Xe               | <sup>136</sup> Xe       | 3% in liquid scintillator                                 | 50 tonnes              | R&D          |
| R&D                    | Cons                    | truction Operating                                        | Complete               |              |

#### Sensitivity for some experiments

# **Discovery Sensitivity Comparison**



7

### ZICOS experiment for neutrinoless double beta decay using <sup>96</sup>Zr

Liquid Scintillator:

- (1) 10 wt.% Zr(iprac)<sub>4</sub> loaded in Liquid Scintillator
- (2) 3~4% at 3.35MeV of energy resolution with 64% photo coverage and long attenuation length.

Pure water surrounding inner detector in order to veto muons and external backgrounds.

Inner detector with ~64% photo coverage 20" PMT including 1.7ton Zirconium loaded 113 tons LS in fiducial volume. (Total vol. : 180 tons)



10m

Purpose:
① Direct measurement of 0vββ
② Confirm parameter of nuclear matrix element model

### Liquid Scintillator solving Zr(iPrac)<sub>4</sub>

 $Zr(CH_3COCHCOOCH(CH_3)_2)_4$ =  $Zr(iPrac)_4$ mw : 663.87

Zr(iprac)<sub>4</sub> 2242mg, PPO 999mg and POPOP 10mg solved in 20mL Anisole





#### > 70g/L of Zirconium could be solved in anisole.

### Performance of liquid scintillator

#### Measured at several conditions of PPO concentration



 $48.7 \pm 7.1\%$  light yield to standard cocktail was obtained at 10wt.% concentration.



 $\frac{13.0 \pm 2.0\%}{\sqrt{(64\%/9.2\%)X(3.35MeV/1.03MeV)}}$ = 2.7 ± 0.4% at 3.35MeV

10

#### <u>Measurement for energy resolution by 20%</u> photo coverage





coverage



2.2%@3.35MeV &60% photo coverage



11

#### Conceptual design of ZICOS detector

#### Phys.Rev.Lett. 117 (2016) 082503



#### <sup>96</sup>Zr : 45kg (nat.) → 865kg(50% enrich)→1/20 BG $T_{1/2}^{0\nu} > 4 \times 10^{25}$ yrs → $2 \times 10^{26}$ yrs → $\sim 1 \times 10^{27}$ yrs

### Decay scheme of <sup>208</sup>TI



The vertex position reconstructed by scintillation might be within fiducial volume due to gammas.

|                | y(i)                          |
|----------------|-------------------------------|
| Radiations     | ( <b>Bq-s</b> ) <sup>-1</sup> |
| beta- 5        | 2.27×10 <sup>-03</sup>        |
| beta- 8        | 3.09×10 <sup>-02</sup>        |
| beta- 10       | 6.30×10 <sup>-03</sup>        |
| beta- 11       | 2.45×10 <sup>-01</sup>        |
| beta- 12       | $2.18 \times 10^{-01}$        |
| beta- 13       | 4.87×10 <sup>-01</sup>        |
| ce-K, gamma 3  | 4.04×10 <sup>-03</sup>        |
| gamma 4        | 6.31×10 <sup>-02</sup>        |
| ce-K, gamma 4  | $2.84 \times 10^{-02}$        |
| ce-L, gamma 4  | 4.87×10 <sup>-03</sup>        |
| gamma 6        | $2.26 \times 10^{-01}$        |
| ce-K, gamma 6  | $1.97 \times 10^{-02}$        |
| ce-L, gamma 6  | 3.32×10 <sup>-03</sup>        |
| gamma 7        | 8.45×10 <sup>-01</sup>        |
| ce-K, gamma 7  | $1.28 \times 10^{-02}$        |
| ce-L, gamma 7  | 3.51×10 <sup>-03</sup>        |
| gamma 13       | $1.81 \times 10^{-02}$        |
| gamma 15       | $1.24 \times 10^{-01}$        |
| ce-K, gamma 15 | $2.80 \times 10^{-03}$        |
| gamma 19       | 3.97×10 <sup>-03</sup>        |
| gamma 25       | 9.92×10 <sup>-01</sup>        |

## Discrimination of signal and BG

Reconstructed vertex by scintillation light

 $0\nu\beta\beta$  event

 $\beta$  decay

#### 2.6MeV γ

Reconstructed vertex by Cherenkov light Balloon or surface of detector

ニュートリノを伴わない二重ベータ崩壊とその周辺

14

## Topological info : averaged angle





Average angle with respect to averaged direction for single electron seems to have a peak at 48 degree which is almost same as Cherenkov angle.

15

### **BG** reduction using topological information



<u>PMT hit pattern of <sup>208</sup>TI BG and</u> <u> $0\nu\beta\beta$  signal</u>

Topological information from PMT position which received Cherenkov lights could be used for reduction of <sup>208</sup>TI BG.

ニュートリノを伴わない二重ベータ崩壊とその周辺

#### Measurement of pulse shape difference

#### FADC digitizer: CAEN V1751



#### 10 bit 2 GS/s (interleaved) —1-GS/s-ADC

- 4-8 channel
- FPGA for real time Digital Pulse Processing:
  - Pulse Shape Discrimination (DPP-PSD)
  - Zero Length Encoding (DPP-ZLEplus)
  - 0.2 or 1 Vpp input dynamics single ended or 1 Vpp differential
- 16-bit programmable DC offset adjustment:  $\pm 0.5 \text{ V} / \pm 0.1 \text{ V}$
- Trigger Time stamps
- Memory buffer: up to 14.4 MS/ch (28.8 MS/ch @2 GS/s)
- Programmable event size and pre-post trigger adjustment
- Analog Sum/Majority and digital over/under threshold flags for **Global Trigger logic**
- Front panel clock In/Out available for multiboard synchronisation (direct feed through or PLL based synthesis)
- 16 programmable LVDS I/Os
- Optical Link interface (CAEN proprietary protocol)
- VME64X compliant interface
- A2818(PCI) / A3818 (PCIe) Controller available for handling up to 8/32 modules Daisy chained via Optical Lin
- Firmware upgradeable via VME/Optical Link
- Libraries, Demos (C and LabView) and Software tools for Windows and Linux

Mod. V1751

#### Measurement of pulse shape difference

#### Photomultiplier : Hamamatsu H2431-50 (R2083)





• Spectral response : 400K QE: 25% at peak

Dynode structure : linear focused/8 dinodes

High voltage : 3000V

Gain: 2.5 × 10<sup>6</sup> dark current :100nA (H6410:10nA)

Time response :0.37ns(TTS) 0.7ns(rise time)

#### Pulse shape of Cherenkov and scintillation



 Pulse shape of <sup>90</sup>Sr using H2431-50 measured by V1751 with DES mode (2GS/s) Decay time of scintillation : 4.57ns and 8.38ns • Rise time of scintillation : 1.45ns Rise time of Cherenkov 0.75ns

Use the charge ratio  $Q_{time}/Q_{total}$ . Here,  $Q_{time}$  is FADC value in each time, and  $Q_{total}$  is sum of FADC value between 55ns and 80ns.

#### Q<sub>total</sub> distribution for $\gamma$ sources





<sup>133</sup>Ba (356keV)
Compton edge: 207keV
<sup>57</sup>Co (122keV)
Under Cherenkov threshold (169kev)

 $\bullet$ 

 $\bullet$ 

 $\bigcirc$ 

# Pulse shape with charge ratio in each FADC time.

#### Charge ratio in rise time using ZICOS LS



- There is difference of shape between t=57ns and 58ns
- Charge ratio looks
   depend on the energy
- For t>58.5ns, all shapes were almost same.

Cherenkov looks dominant between 57ns and 58ns.

Template waveform of scintillation between 57.0ns and 58.0ns for <sup>57</sup>Co.

#### χ<sup>2</sup>distribution using <sup>57</sup>Co template



Most of backgrounds have lower  $\chi^2$  than 1.0 Most of backgrounds have lower energy than Cherenkov threshold, then only scintillation was seen.

It seems to events with Cherenkov lights should have large  $\chi^2$  value.

#### Measured by fixed energy fixed direction events



χ<sup>2</sup>>0.1:22events/28events =78.6%





Fixed energy : 835keV ADC ch~3400cn

If the events with  $\chi^2 > 0.1$ should have Cherenkov lights, is this inefficiency 21.4  $\pm$  9.6% correct?

ニュートリノを伴わない二重ベータ崩壊とその周辺

#### Measured by Compton edge event and BG sample





1772/3606=49.1 $\pm$ 1.4% for BG sample Inefficiency value between Compton edge and BG sample differs with 2.825 Topology of Cherenkov lights for O(1)MeV e<sup>-</sup> was confirmed.

### <u>Measurement of topological information</u> (averaged angle) using HUNI-ZICOS



#### 3/8" photomultiplier H3164-12(R1635)



- Sensitivity: 400K
- Dynode type : Line focus/8dynode
- Applied voltage: 1250V
- Gain: 1.0 × 10<sup>6</sup> Dark current: 50nA
- Time characteristics: 0.5ns(TTS) 0.8ns (rise time)

Feb 12th, 2021

#### Pulse shape measurement by H3164-12





Cherenkov dominan

#### Scintillation dominant

#### Pulse Shape Discrimination using H3164-12





It's possible but need tuning.

ニュートリノを伴わない二重ベータ崩壊とその周辺

#### <u>Hemisphere flask and PMT fixing jig for HUNI-</u> <u>ZICOS</u>





### Extension sharpening for hemisphere flask and PMT



Extension sharpening for hemisphere flask was almost done.
Some extensions for PMT hole should be necessary.

ニュートリノを伴わない二重ベータ崩壊とその周辺

Feb 12th, 2021

#### Flash ADC V1742 and PMT HV system



#### Summary

- High Zr concentrated liquid scintillator is available.
- Expected energy resolution 2.2%@3.35MeV&20% photo coverage
  - $\rightarrow$  need to confirm with real 60% photo coverage
- To establish background reduction technique for <sup>208</sup>TI decay
  - $\rightarrow$  topological information using Cherenkov lights is useful.
  - Pulse shape discrimination for selection of PMT which receives Cherenkov lights : almost done
  - 2 Confirmation of topological information : HUNI-ZICOS will be ready to measure soon.
  - ③ Verification of βγ events reduction using topological information : UNI-ZICOS will start in next fiscal year.

#### Verification of <sup>208</sup>TI BG reduction

Direct measurement using βγ events by UNI-ZICOS



#### Summary

- High Zr concentrated liquid scintillator is available.
- Expected energy resolution 2.2%@3.35MeV&20% photo coverage
  - $\rightarrow$  need to confirm with real 60% photo coverage
- To establish background reduction technique for <sup>208</sup>TI decay
  - → topological information using Cherenkov lights is useful.
     ① Pulse shape discrimination for selection of PMT which
  - receives Cherenkov lights : almost done
  - ② Confirmation of topological information : HUNI-ZICOS will be ready to measure soon.
  - ③ Verification of βγ events reduction using topological information : UNI-ZICOS will start in next fiscal year.
- Physics program (measurement of  ${}^{96}$ Zr  $2\nu\beta\beta$  T<sub>1/2</sub>) with ZICOS-I will start soon and get results within 5 years.

# Measurement of T<sup>2v</sup><sub>1/2</sub> for <sup>96</sup>Zr using ZICOS-I First physics program to measure T<sup>2v</sup><sub>1/2</sub> for <sup>96</sup>Zr



 20cm diameter flask using Ultra-pure quartz and 30 low BG 2" PMT R3378-50 (R2083) Synthesis Zr(iPrac)<sub>4</sub> 300g which corresponds to <sup>96</sup>Zr isotope1g According to NEMO-3 result, expect 200 2x events/year Location: Kamíoka mine

Stay tuned!

#### Summary

- High Zr concentrated liquid scintillator is available.
- Expected energy resolution 2.2%@3.35MeV&20% photo coverage
  - $\rightarrow$  need to confirm with real 60% photo coverage
- To establish background reduction technique for <sup>208</sup>TI decay
  - $\rightarrow$  topological information using Cherenkov lights is useful.
  - Pulse shape discrimination for selection of PMT which receives Cherenkov lights : almost done
  - Confirmation of topological information : HUNI-ZICOS will be ready to measure soon.
  - ③ Verification of βγ events reduction using topological information : UNI-ZICOS will start in next fiscal year.
- Physics program (measurement of  ${}^{96}$ Zr 2 $_{\nu\beta\beta}$  T<sub>1/2</sub>) with ZICOS-I will start soon and get results within 5 years.
- Future program for 0vββ search will start after ZICOS-I with 100g~1kg of <sup>96</sup>Zr using ZICOS-II detector. (need enrichment)

#### Backup slides

ニュートリノを伴わない二重ベータ崩壊とその周辺

Feb 12th, 2021

37

# Property of Cherenkov light

- Refractive index of anisole : n=1.518
- Cherenkov angle is determined by cosθ= 1/nβ
- Assuming 1.65MeV electron, then β=0.972 and Cherenkov angel θ=47.3 degree are expected.
- Cherenkov light should be measured. (400nm – 600nm : 100 photon/MeV )

$$\frac{dN}{dx} = 2\pi z^2 \alpha \sin^2 \theta_{\rm c} \int_{\lambda_1}^{\lambda_2} \frac{d\lambda}{\lambda} = 475 z^2 \sin^2 \theta_{\rm c} {\rm photon/cm}$$

c.f. Light yield of Scintillation : ~12000photon/Me

Cherenkov light = 1~2% of scintillation light

 $\frac{c}{n}t$ 

ßet

# Emission and absorption spectra for solvent and solute in standard cocktail



PPO absorbed most of emission lights from anisole.

Effectively the energy was transferred to the secondary scintillator.

Feb 12th, 2021

39

# Absorbance spectra for Zr(iprac)<sub>4</sub>



Absorption peaks of Zr(iprac)<sub>4</sub> was found around at 278nm. However, overlapped region with emission of anisole was existed.

 $Zr(iprac)_4$  works as a quencher for the liquid scintillator system.